Tunability of Plasmonic Devices

  • Dimitrios C. Zografopoulos
  • Romeo Beccherelli
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


An overview on tunable plasmonic components for guided-wave applications in integrated photonic circuitry is provided. Emphasis is given on a series of electro-optically controlled plasmonic elements, variable attenuators, phase modulators, and directional coupler switches, based on the use of nematic liquid crystalline materials. These extend to various plasmonic platforms, which target different light confinement scales in view of optical intra- and inter-chip interconnection applications.


Plasmonics Liquid crystals Integrated photonics Directional couplers Switching components 



This work was supported by the Marie-Curie Intra-European Fellowship ALLOPLASM (FP7-PEOPLE-2010-IEF-273528), within the 7th European Community Framework Programme. The authors would like to thank Dr. A. C. Tasolamprou, Dr. K. P. Prokopidis, and Assoc. Prof. E. E. Kriezis, for their contribution and helpful discussions.


  1. 1.
    Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101CrossRefADSGoogle Scholar
  2. 2.
    Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9:20–27CrossRefGoogle Scholar
  3. 3.
    Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry. Phys Today 61:44–50CrossRefADSGoogle Scholar
  4. 4.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefADSGoogle Scholar
  5. 5.
    Sorger VJ, Oulton RF, Ma R-M, Zhang X (2012) Toward integrated plasmonic circuits. MRS Bull 37:728–738CrossRefGoogle Scholar
  6. 6.
    Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19(22):22029CrossRefADSGoogle Scholar
  7. 7.
    Le Ru E, Etchegoin P (2009) Principles of surface enhanced Raman spectroscopy and related plasmonic effects. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Atwater HA (2007) The promise of plasmonics. Sci Am 296:56–63CrossRefGoogle Scholar
  9. 9.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–214CrossRefADSGoogle Scholar
  10. 10.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748CrossRefADSGoogle Scholar
  11. 11.
    Pitilakis AK, Kriezis EE (2013) Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. J Opt Soc Am B 30:1954–1965CrossRefADSGoogle Scholar
  12. 12.
    Giannoulis G, Kalavrouziotis D, Apostolopoulos D, Papaioannou S, Kumar A, Bozhevolnyi S, Markey L, Hassan K, Weeber J-C, Dereux A, Baus M, Karl M, Tekin T, Tsilipakos O, Pitilakis AK, Kriezis EE, Vyrsokinos K, Avramopoulos H, Pleros N (2012) Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip. IEEE Photonics Technol Lett 24:374–376CrossRefADSGoogle Scholar
  13. 13.
    Pleros N, Kriezis EE, Vyrsokinos K (2011) Optical interconnects using plasmonics and Si-photonics. IEEE Photonics J 3:296–301CrossRefGoogle Scholar
  14. 14.
    Hassan K, Weeber J-C, Markey L, Dereux A, Tsilipakos O, Pitilakis A, Kriezis EE (2011) Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides. Appl Phys Lett 99(24):241110CrossRefADSGoogle Scholar
  15. 15.
    Hassan K, Weeber J-C, Markey L, Dereux A (2011) Thermo-optical control of dielectric loaded plasmonic racetrack resonators. J Appl Phys 110:023106CrossRefADSGoogle Scholar
  16. 16.
    Nikolajsen T, Leosson K, Bozhevolnyi SI (2004) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833–5835CrossRefADSGoogle Scholar
  17. 17.
    Nikolajsen T, Leosson K, Bozhevolnyi SI (2005) In-line extinction modulator based on long-range surface plasmon polaritons. Opt Commun 244:455–459CrossRefADSGoogle Scholar
  18. 18.
    Gagnon G, Lahoud N, Mattiussi GA, Berini P (2006) Thermally activated variable attenuation of long-range surface plasmon-polariton waves. J Lightwave Technol 24:4391–4402CrossRefADSGoogle Scholar
  19. 19.
    Park S, Kim M-S, Ju JJ, Kim JT, Park SK, Lee J-M, Lee W-J, Lee M-H (2010) Temperature dependence of symmetric and asymmetric structured Au stripe waveguides. Opt Commun 283:3267–3270CrossRefADSGoogle Scholar
  20. 20.
    Liu SW, Xiao M (2006) Electro-optic switch in ferroelectric thin films mediated by surface plasmons. Appl Phys Lett 88:143512CrossRefADSGoogle Scholar
  21. 21.
    Berini P, Mattiussi G, Lahoud N, Charbonneau R (2007) Wafer-bonded surface plasmon waveguides. Appl Phys Lett 90:061109CrossRefADSGoogle Scholar
  22. 22.
    Sun X, Zhou L, Li X, Hong Z, Chen J (2011) Design and analysis of a phase modulator based on a metal–polymer–silicon hybrid plasmonic waveguide. Appl Opt 50:3428–3434CrossRefADSGoogle Scholar
  23. 23.
    Randhawa S, Lachèze S, Renger J, Bouhelier A, de Lamaestre RE, Dereux A, Quidant R (2012) Performance of electro-optical plasmonic ring resonators at telecom wavelengths. Opt Express 20:2354–2362CrossRefADSGoogle Scholar
  24. 24.
    Zografopoulos DC, Asquini R, Kriezis EE, d’Alessandro A, Beccherelli R (2012) Guided-wave liquid-crystal photonics. Lab Chip 12:3598–3610Google Scholar
  25. 25.
    Beeckman J, Neyts K, Vanbrabant PJM (2011) Liquid-crystal photonic applications. Opt Eng 50:081202CrossRefADSGoogle Scholar
  26. 26.
    Gilardi G, Donisi D, Beccherelli R, Serpengüzel A (2009) Liquid crystal tunable filter based on sapphire microspheres. Opt Lett 34(21):3253–3255CrossRefADSGoogle Scholar
  27. 27.
    d’Alessandro A, Asquini R, Trotta M, Gilardi G, Beccherelli R, Khoo IC (2010) All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide. Appl Phys Lett 97:093302Google Scholar
  28. 28.
    Donisi D, Bellini B, Beccherelli R, Asquini R, Gilardi G, Trotta M, d’Alessandro A (2010) A switchable liquid-crystal optical channel waveguide on silicon. IEEE J Quantum Electron. 46:762–768Google Scholar
  29. 29.
    Abdulhalim I (2012) Liquid crystal active nanophotonics and plasmonics: from science to devices. J Nanophotonics 6:061001MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Kossyrev PA, Yin A, Cloutier SG, Cardimon DA, Huang D, Alsing PM, Xu JM (2005) Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett 5:1978–1981CrossRefADSGoogle Scholar
  31. 31.
    Liu YJ, Si GY, Leong ESP, Xiang N, Danner AJ, Teng JH (2012) Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 24:OP131–OP135Google Scholar
  32. 32.
    Hao Q, Zhao Y, Juluri BK, Kiraly B, Liou J, Khoo IC, Huang TJ (2011) Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals. J Appl Phys 109:084340CrossRefADSGoogle Scholar
  33. 33.
    Zhao Y, Hao Q, Ma Y, Lu M, Zhang B, Lapsley M, Khoo I-C, Huang TJ (2012) Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array. Appl Phys Lett 100(5):053119CrossRefADSGoogle Scholar
  34. 34.
    De Sio L, Caputo R, Cataldi U, Umeton C (2011) Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials. J Mater Chem 21:18967–18970CrossRefGoogle Scholar
  35. 35.
    DeSio L, Ferjani S, Strangi G, Umeton C, Bartolino R (2011) Universal soft matter template for photonic applications. Soft Mater 7:3739–3743CrossRefADSGoogle Scholar
  36. 36.
    De Sio L, Cunningham A, Verrina V, Tone CM, Caputo R, Bürgi T, Umeton C (2012) Double active control of the plasmonic resonance of a gold nanoparticle array. Nanoscale 4:7619–7623CrossRefADSGoogle Scholar
  37. 37.
    Chigrinov V, Kozenkov V, Kwok H-S (2008) Photoalignment of liquid crystalline materials. Wiley, Chichester/HobokenCrossRefGoogle Scholar
  38. 38.
    Beccherelli R, Manolis IG, d’Alessandro A (2005) Characterisation of photoalignment materials for photonic applications at visible and infrared wavelengths. Mol Cryst Liq Cryst 429(1):227–235Google Scholar
  39. 39.
    d’Alessandro A, Bellini B, Donisi D, Beccherelli R, Asquini R (2006) Nematic liquid crystal optical channel waveguides on silicon. IEEE J Quantum Electron 42:1084–1090Google Scholar
  40. 40.
    Bellini B, Larchanché J-F, Vilcot J-P, Decoster D, Beccherelli R, d’Alessandro A (2005) Photonic devices based on preferential etching. Appl Opt 44:7181–7186Google Scholar
  41. 41.
    Bellini B, d’Alessandro A, Beccherelli R (2007) A method for butt-coupling optical fibres to liquid crystal planar waveguides. Opt Mater 29:1019–1022Google Scholar
  42. 42.
    Steward IW (2004) The static and dynamic continuum theory of liquid crystals. Taylor & Francis, LondonGoogle Scholar
  43. 43.
    Zografopoulos DC, Beccherelli R, Tasolamprou AC, Kriezis EE (2013) Liquid-crystal tunable waveguides for integrated plasmonic components. Photonics Nanostruct Fundam Appl 11:73–84CrossRefADSGoogle Scholar
  44. 44.
    Pitilakis AK, Zografopoulos DC, Kriezis EE (2011) In-line polarization controller based on liquid-crystal photonic crystal fibers. J Lightwave Technol 29:2560–2569CrossRefADSGoogle Scholar
  45. 45.
    Bellini B, Beccherelli R (2009) Modelling, design and analysis of liquid crystal waveguides in preferentially@stringpr = Phys. Rep. etched silicon grooves. J Phys D Appl Phys 42:045111Google Scholar
  46. 46.
    Jin J (2002) The finite element method for electromagnetics. Wiley, New YorkGoogle Scholar
  47. 47.
    Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3Rd edn. Artech House, NorwoodGoogle Scholar
  48. 48.
    Prokopidis KP, Zografopoulos DC (2013) Efficient FDTD algorithms for dispersive Drude-critical points media based on the bilinear z-transform. Electron Lett 49:534–536CrossRefGoogle Scholar
  49. 49.
    Prokopidis KP, Zografopoulos DC (2013) A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures. J Lightwave Technol 31:2467–2476CrossRefADSGoogle Scholar
  50. 50.
    Prokopidis KP, Zografopoulos DC, Kriezis EE (2013) Rigorous broadband investigation of liquid-crystal plasmonic structures using FDTD dispersive-anisotropic models. J Opt Soc Am B 30:2722–2730CrossRefADSGoogle Scholar
  51. 51.
    Pitilakis A, Kriezis EE (2011) Longitudinal 2x2 switching configurations based on thermo-optically addressed dielectric-loaded plasmonic waveguides. J Lightwave Technol 29:2636–2646CrossRefADSGoogle Scholar
  52. 52.
    Ziogos GD, Kriezis EE (2008) Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method. Opt Quant Electron 40:733–748CrossRefGoogle Scholar
  53. 53.
    Vanbrabant PJ, Beeckman J, Neyts K, James R, Fernandez FA (2009) A finite element beam propagation method for simulation of liquid crystal devices. Opt Express 17:10895–10909CrossRefADSGoogle Scholar
  54. 54.
    Beeckman J, James R, Fernández FA, De Cort W, Vanbrabant PJM, Neyts K (2009) Calculation of fully anisotropic liquid crystal waveguide modes. J Lightwave Technol 27:3812–3819CrossRefADSGoogle Scholar
  55. 55.
    Zografopoulos DC, Beccherelli R (2013) Design of a vertically-coupled liquid-crystal long-range plasmonic optical switch. Appl Phys Lett 102:101103CrossRefADSGoogle Scholar
  56. 56.
    Zografopoulos DC, Beccherelli R (2013) Long-range plasmonic directional coupler switches controlled by nematic liquid crystals. Opt Express 21:8240–8250CrossRefADSGoogle Scholar
  57. 57.
    Zografopoulos DC, Pitilakis AK, Kriezis EE (2013) Dual-band electro-optic polarization switch based on dual-core liquid-crystal photonic crystal fibers. Appl Opt 52:6439–6444CrossRefADSGoogle Scholar
  58. 58.
    Vial A, Laroche T, Dridi M, Le Cunff L (2011) A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl Phys A Mater Sci Process 103:849–853CrossRefADSGoogle Scholar
  59. 59.
    Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407CrossRefADSGoogle Scholar
  60. 60.
    Zografopoulos DC, Beccherelli R (2013) Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators. J Opt 15:055009CrossRefADSGoogle Scholar
  61. 61.
    Pfeifle J, Alloatti L, Freude W, Leuthold J, Koos C (2012) Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Opt Express 20:15359–15376CrossRefGoogle Scholar
  62. 62.
    Bahramipanah M, Mirtaheri SA, Abrishamian MS (2012) Electrical beam steering with metal-anisotropic-metal structure. Opt Lett 37:527–529CrossRefADSGoogle Scholar
  63. 63.
    Volkov VS, Bozhevolnyi SI, Devaux E, Ebbesen T (2006) Compact gradual bends for channel plasmon polaritons. Opt Express 14:4494–4503CrossRefADSGoogle Scholar
  64. 64.
    Dierking I (2001) Dielectric breakdown in liquid crystals. J Phys D Appl Phys 34(5):806–813CrossRefADSGoogle Scholar
  65. 65.
    Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75:245405CrossRefADSGoogle Scholar
  66. 66.
    Chen Z, Holmgaard T, Bozhevolnyi SI, Krasavin AV, Zayats AV, Markey L, Dereux A (2009) Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt Lett 34:310–312CrossRefGoogle Scholar
  67. 67.
    Holmgaard T, Chen Z, Bozhevolnyi SI, Markey L, Dereux A, Krasavin AV, Zayats AV (2009) Wavelength selection by dielectric-loaded plasmonic components. Appl Phys Lett 94:051111CrossRefADSGoogle Scholar
  68. 68.
    Tsilipakos O, Pitilakis A, Yioultsis TV, Papaioannou S, Vyrsokinos K, Kalavrouziotis D, Giannoulis G, Apostolopoulos D, Avramopoulos H, Tekin T, Baus M, Karl M, Hassan K, Weeber J-C, Markey L, Dereux A, Kumar A, Bozhevolnyi SI, Pleros N, Kriezis EE (2012) Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration. IEEE J Quantum Electron 48(5):678–687CrossRefADSGoogle Scholar
  69. 69.
    Papaioannou S, Vyrsokinos K, Tsilipakos O, Pitilakis A, Hassan K, Weeber J-C, Markey L, Dereux A, Bozhevolnyi SI, Miliou A, Kriezis EE, Pleros N (2011) A 320 Gb/s-throughput capable 2x2 silicon-plasmonic router architecture for optical interconnects. J Lightwave Technol 29(21):3185–3195CrossRefADSGoogle Scholar
  70. 70.
    Tasolamprou AC, Zografopoulos DC, Kriezis EE (2011) Liquid crystal-based dielectric loaded surface plasmon polariton optical switches. J Appl Phys 110:093102CrossRefADSGoogle Scholar
  71. 71.
    Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61:10484–10503CrossRefADSGoogle Scholar
  72. 72.
    Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1:484–588CrossRefGoogle Scholar
  73. 73.
    Charbonneau R, Scales C, Breukelaar I, Fafard S, Lahoud N, Mattiussi G, Berrini P (2006) Passive integrated optics elements based on long-range surface plasmon polaritons. J Lightwave Technol 24:477–494CrossRefADSGoogle Scholar
  74. 74.
    Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen MS, Bozhevolnyi SI (2005) Integrated optical components utilizing long-range surface plasmon polaritons. J Lightwave Technol 23:413–422CrossRefADSGoogle Scholar
  75. 75.
    Ju JJ, Park S, Kim M-S, Kim JT, Park SK, Park YJ, Lee M-H (2007) 40 Gbits light signal transmission in long-range surface plasmon waveguides. Appl Phys Lett 91(17):171117CrossRefADSGoogle Scholar
  76. 76.
    Ju JJ, Park S, Kim M-S, Kim JT, Park SK, Park YJ, Lee M-H (2008) Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications. J Lightwave Technol 26(11):1510–1518CrossRefADSGoogle Scholar
  77. 77.
    Kim JT, Ju JJ, Park S, Kim M-S, Park SK, Lee M-H (2008) Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt Express 16(17):13133–13138CrossRefADSGoogle Scholar
  78. 78.
    Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys Rev B 63:125417CrossRefADSGoogle Scholar
  79. 79.
    Zografopoulos DC, Beccherelli R (2013) Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides. Plasmonics 8:599–604CrossRefGoogle Scholar
  80. 80.
    Zografopoulos DC, Beccherelli R (2013) Liquid-crystal tunable long-range surface plasmon polariton directional coupler. Mol Cryst Liq Cryst 573:70–76CrossRefGoogle Scholar
  81. 81.
    Won HS, Kim KC, Song SH, Oh C-H, Kim PS, Park S, Kim SI (2006) Vertical coupling of long-range surface plasmon polaritons. Appl Phys Lett 88:011110CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Dimitrios C. Zografopoulos
    • 1
  • Romeo Beccherelli
    • 1
  1. 1.Consiglio Nazionale delle RicercheIstituto per la Microelettronica e Microsistemi (CNR-IMM)RomaItaly

Personalised recommendations