Advertisement

Ultrafast Photonics with Microstructures Fibers

  • Aleksandr A. Lanin
  • Aleksandr V. Mitrofanov
  • Andrei B. Fedotov
  • Sean Blakley
  • Dmitrii A. Sidorov-Biryukov
  • Aleksei M. Zheltikov
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Microstructure fibers – new optical fibers with tailored dispersion and nonlinearity – provide a constantly growing platform for the development of advanced fiber-format devices and components for ultrafast photonics . Unique options offered by microstructure fiber technology, such as dispersion management through fiber structure engineering and enhancement of optical nonlinearity due to a strong field confinement in a small-size fiber core, are pushing the frontiers of ultrafast photonics , allowing the creation of efficient sources of supercontinuum radiation, novel compact fiber lasers, as well as frequency converters, pulse compressors, and fiber components for microscopy and bioimaging.

Keywords

Fiber Laser Nonlinear Crystal Periodically Pole Lithium Niobate Ultrashort Light Pulse Forsterite Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Russell P (2003) Photonic crystal fibers. Science 299(5605):358–362CrossRefADSGoogle Scholar
  2. 2.
    Dudley JM, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78:1135–1184CrossRefADSGoogle Scholar
  3. 3.
    Zheltikov AM (2004) Nonlinear optics of microstructure fibers. Physics-Uspekhi 47:69–98CrossRefADSGoogle Scholar
  4. 4.
    Limpert J, Roser F, Schreiber T, Tunnermann A (2006) High-power ultrafast fiber laser systems. IEEE J Sel Top Quantum Electron 12:233–244CrossRefGoogle Scholar
  5. 5.
    Knight JC (2007) Photonic crystal fibers and fiber lasers (Invited). J Opt Soc Am B 24(8):1661CrossRefADSGoogle Scholar
  6. 6.
    Holzwarth R, Udem T, Hänsch T, Knight J, Wadsworth W, Russell P (2000) Optical frequency synthesizer for precision spectroscopy. Phys Rev Lett 85:2264–2267CrossRefADSGoogle Scholar
  7. 7.
    Udem T, Holzwarth R, Hänsch TW (2002) Optical frequency metrology. Nature 416:233–237CrossRefADSGoogle Scholar
  8. 8.
    Corkum PB, Krausz F (2007) Attosecond science. Nat Phys 3:381–387CrossRefGoogle Scholar
  9. 9.
    Teisset CY, Ishii N, Fuji T, Metzger T, Köhler S, Holzwarth R, Baltuska A, Zheltikov AM, Krausz F (2005) Soliton-based pump-seed synchronization for few-cycle OPCPA. Opt Express 13(17):6550CrossRefADSGoogle Scholar
  10. 10.
    Andresen ER, Birkedal V, Thø gersen J, Keiding SRR (2006) Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift. Opt Lett 31(9):1328Google Scholar
  11. 11.
    Sidorov-Biryukov DA, Serebryannikov EE, Zheltikov AM (2006) Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic-crystal fiber. Opt Lett 31(15):2323CrossRefADSGoogle Scholar
  12. 12.
    Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29CrossRefGoogle Scholar
  13. 13.
    Doronina LV, Fedotov IV, Voronin AA, Ivashkina OI, Zots MA, Anokhin KV, Rostova E, Fedotov AB, Zheltikov AM (2009) Tailoring the soliton output of a photonic crystal fiber for enhanced two-photon excited luminescence response from fluorescent protein biomarkers and neuron activity reporters. Opt Lett 34:3373–3375CrossRefADSGoogle Scholar
  14. 14.
    Doronina-Amitonova LV, Fedotov IV, Ivashkina OI, Zots MA, Fedotov AB, Anokhin KV, Zheltikov AM (2011) Photonic-crystal-fiber platform for multicolor multilabel neurophotonic studies. Appl Phys Lett 98:253706CrossRefADSGoogle Scholar
  15. 15.
    Liu H, Hu M, Liu B, Song Y, Chai L, Zheltikov AM, Wang C (2010) Compact high-power multiwavelength photonic-crystal-fiber-based laser source of femtosecond pulses in the infraredvisibleultraviolet range. J Opt Soc Am B 27:2284CrossRefADSGoogle Scholar
  16. 16.
    Liu F, Song Y-J, Xing Q-R, Hu M-L, Li Y-F, Wang C-L, Chai L, Zhang W-L, Zheltikov A, Wang C-Y (2010) Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier. Photon Technol Lett IEEE 22:814–816CrossRefADSGoogle Scholar
  17. 17.
    Fedotov AB, Voronin AA, Fedotov IV, Ivanov AA, Zheltikov AM (2009) Powerful wavelength-tunable ultrashort solitons in a solid-core photonic-crystal fiber. Opt Lett 34:851CrossRefADSGoogle Scholar
  18. 18.
    Akhmanov S, Sukhorukov A, Chirkin A (1969) Nonstationary phenomena and space-time analogy in nonlinear optics. Sov Phys JETP 28(4):748–757ADSGoogle Scholar
  19. 19.
    Comly J, Garmire E (1968) Second harmonic generation from short pulses. Appl Phys Lett 12Google Scholar
  20. 20.
    Kato K (1994) Temperature-tuned 90 deg; phase-matching properties of LiB3O5. Quantum Electron IEEE J 30:2950–2952CrossRefADSGoogle Scholar
  21. 21.
    Marangoni M, Gambetta A, Manzoni C, Kumar V, Ramponi R, Cerullo G (2009) Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator. Opt Lett 34:3262–3264CrossRefADSGoogle Scholar
  22. 22.
    Levenson M, Flytzanis C, Bloembergen N (1972) Interference of resonant and nonresonant three-wave mixing in diamond. Phys Rev B 6:3962–3965CrossRefADSGoogle Scholar
  23. 23.
    Lanin AA, Fedotov AB, Zheltikov AM (2012) Ultrafast three-dimensional submicrometer-resolution readout of coherent optical-phonon oscillations with shaped unamplified laser pulses at 20 MHz. Opt Lett 37:1508–1510CrossRefADSGoogle Scholar
  24. 24.
    Warren WS, Rabitz H, Dahleh M (1993) Coherent control of quantum dynamics: the dream is alive. Science (N. Y.) 259:1581–1589MathSciNetCrossRefzbMATHADSGoogle Scholar
  25. 25.
    Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M, Gerber G (1998) Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282(5390):919–922CrossRefADSGoogle Scholar
  26. 26.
    Herek JL, Wohlleben W, Cogdell RJ, Zeidler D, Motzkus M (2002) Quantum control of energy flow in light harvesting. Nature 417:533–535CrossRefADSGoogle Scholar
  27. 27.
    Dudovich N, Oron D, Silberberg Y (2002) Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512–514CrossRefADSGoogle Scholar
  28. 28.
    Naumov AN, Materny A, Kiefer W, Motzkus M, Zheltikov AM (2001) Reversible computations and ultrafast logic gates by coherent multiwave mixing supplemented with quantum control. Laser Phys 11(12):1319–1323Google Scholar
  29. 29.
    De Greve K, McMahon PL, Press D, Ladd TD, Bisping D, Schneider C, Kamp M, Worschech L, Höfling S, Forchel A, Yamamoto Y (2011) Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat Phys 7:872–878CrossRefGoogle Scholar
  30. 30.
    Weiner AM (2000) Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71:1929CrossRefADSGoogle Scholar
  31. 31.
    Zheltikov AM (2007) Fiber-optic synthesizer of controlled sequences of ultrashort light pulses for single-beam coherent anti-Stokes Raman scattering microspectroscopy. JETP Lett 85:539–543CrossRefADSGoogle Scholar
  32. 32.
    Ivanov A, Linik Y, Akimov D, Alfimov M, Siebert T, Kiefer W, Zheltikov A (2006) Coherent Raman spectroscopy with frequency-shifted and shaped pulses from a photonic-crystal fiber. Chem Phys Lett 418:19–23CrossRefADSGoogle Scholar
  33. 33.
    Lanin AA, Fedotov AB, Zheltikov AM (2012) Broadly wavelength- and pulse width-tunable high-repetition rate light pulses from soliton self-frequency shifting photonic crystal fiber integrated with a frequency doubling crystal. Opt Lett 37:3618–3620CrossRefADSGoogle Scholar
  34. 34.
    Knight JC (2003) Photonic crystal fibres. Nature 424:847–851CrossRefADSGoogle Scholar
  35. 35.
    Lim H, Ilday FO, Wise FW (2003) Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser. Opt Lett 28:660CrossRefADSGoogle Scholar
  36. 36.
    Chong A, Renninger WH, Wise FW (2008) Properties of normal-dispersion femtosecond fiber lasers. J Opt Soc Am B 25(2):140CrossRefADSGoogle Scholar
  37. 37.
    Lim H, Wise FW (2004) Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber. Opt Express 12(10):2231CrossRefADSGoogle Scholar
  38. 38.
    Nielsen CK, Jespersen KG, Keiding SR (2006) A 158 fs 5.3 nJ fiber-laser system at 1 m using photonic bandgap fibers for dispersion control and pulse compression. Opt Express 14(13):6063Google Scholar
  39. 39.
    Liu X, Laegsgaard J, Turchinovich D (2010) Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers. Opt Express 18:15475–15483CrossRefADSGoogle Scholar
  40. 40.
    Tamura K, Jacobson J, Ippen EP, Haus HA, Fujimoto JG (1993) Unidirectional ring resonators for self-starting passively mode-locked lasers. Opt Lett 18:220CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Aleksandr A. Lanin
    • 1
    • 2
  • Aleksandr V. Mitrofanov
    • 3
    • 1
    • 2
  • Andrei B. Fedotov
    • 1
    • 2
  • Sean Blakley
    • 4
  • Dmitrii A. Sidorov-Biryukov
    • 1
    • 2
  • Aleksei M. Zheltikov
    • 4
    • 1
    • 2
  1. 1.Physics Department, International Laser CenterM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Russian Quantum CenterMoscowRussia
  3. 3.Institute of Laser and Information TechnologiesRussian Academy of SciencesMoscowRussia
  4. 4.Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA

Personalised recommendations