Biosensing Instrumentation

  • Jean-Pierre Wolf
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Functionalized nanoparticles revolutionized the sensing and imaging of biological samples. A particularly spectacular example was recently achieved with harmonic nanoparticles (HNPs), which allow coherent emission at harmonics of the fundamental wavelength over the whole VIS-NIR spectral range. Deep imaging, nanoscale in situ spatio-temporal focus characterization, on-line monitoring of stem cell differentiation and cancer theranostics are demonstrated. A further ground-breaking coherent approach is based on coherent control of endogenous biomolecules, which provides chemical selectivity at the protein level even “label-free”. State of the art and perspectives related to these new biosensing developments are presented


Bio-imaging Nano-optics Cancer Bacteria detection Protein identification Coherent control Label-free biosensing 



The authors gratefully acknowledge the collaborators at the Universities of Geneva and Lyon, in particular L. Bonacina, F. Courvoisier, L. Guyon, V. Boutou, E. Salmon, J. Yu, G. Mejean, J. Kasparian, C. Kasparian, A. Rondi, S. Afonina, J. Extermann, P. Bejot, S. Weber, D. Kiselev, and M. Moret, as well as H. Rabitz and his group at Princeton, particularly M. Roth and J. Roslund.

We also acknowledge the financial support of the Swiss National Science Foundation (contracts No. 2000021-111688 and No. 200020-124689), the Swiss NCCR MUST, and European FP7 project NAMDIATREAM (NMP-2009-4.0-3-246479).


  1. 1.
    Extermann J, Bonacina L, Cuna E, Kasparian C, Mugnier Y, Feurer T, Wolf JP (2009) Nanodoublers as deep imaging markers for multi-photon microscopy. Optics Express 17:15342–15349CrossRefADSGoogle Scholar
  2. 2.
    Extermann J, Bonacina L, Courvoisier F, Kiselev D, Mugnier Y, Le Dantec R, Galez C, Wolf JP (2008) Nano-FROG: Frequency resolved optical gating by a nanometric object. Opt Express 16:10405–10411CrossRefADSGoogle Scholar
  3. 3.
    Courvoisier F, Boutou V, Guyon L, Roth M, Rabitz H, Wolf JP (2006) Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics. J Photochem Photobiol A-Chem 180:300–306CrossRefGoogle Scholar
  4. 4.
    Courvoisier F, Boutou V, Wood V, Bartelt A, Roth M, Rabitz H, Wolf JP (2005) Femtosecond laser pulses distinguish bacteria from background urban aerosols. Appl Phys Lett 87:063901CrossRefADSGoogle Scholar
  5. 5.
    Petersen J, Mitric R, Bonacic-Koutecky V, Wolf JP, Roslund J, Rabitz H (2010) How shaped light discriminates nearly identical biochromophores. Phys Rev Lett 105:073003CrossRefADSGoogle Scholar
  6. 6.
    Roslund J, Roth M, Guyon L, Boutou V, Courvoisier F, Wolf JP, Rabitz H (2011) Resolution of strongly competitive product channels with optimal dynamic discrimination: application to flavins. J Chem Phys 134:034511CrossRefADSGoogle Scholar
  7. 7.
    Roth M, Guyon L, Roslund J, Boutou V, Courvoisier F, Wolf JP, Rabitz H (2009) Quantum control of tightly competitive product channels. Phys Rev Lett 102:253001CrossRefADSGoogle Scholar
  8. 8.
    Rondi A, Bonacina L, Trisorio A, Hauri C, Wolf J-P (2012) Coherent manipulation of free amino acids fluorescence. Phys Chem Chem Phys 14:9317–9322CrossRefGoogle Scholar
  9. 9.
    Afonina S, Nenadl O, Rondi A, Bonacina L, Extermann J, Kiselev D, Dolamic I, Burgi T, Wolf JP (2013) Discriminability of tryptophan containing dipeptides using quantum control. App Phys B 111:541–549CrossRefADSGoogle Scholar
  10. 10.
    Staedler D, Magouroux T, Joulaud C, Extermann J, Hadji R, Kasparian C, Gerber S, Le Dantec R, Mugnier Y, Juillerat L, Rytz D, Ciepielewski D, Bonacina L, Wolf J-P (2012) Harmonic nanocrystals for bio-labeling: a survey of optical properties and biocompatibility. ACS Nano 6(3):2542–2549CrossRefGoogle Scholar
  11. 11.
    Le Dantec R, Mugnier Y, Djanta G, Bonacina L, Extermann J, Badie L, Joulaud C, Gerrmann M, Rytz D, Wolf JP, Gale C (2011) Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals. J Phys Chem 115(31): 15140–15146Google Scholar
  12. 12.
    Bonacina L, Mugnier Y, Courvoisier F, Le Dantec R, Extermann J, Lambert Y, Boutou V, Galez C, Wolf JP (2007) Polar Fe(IO3)(3) nanocrystals as local probes for nonlinear microscopy. Appl Phys B-Lasers Opt 87:399–403CrossRefADSGoogle Scholar
  13. 13.
    Baumner R, Bonacina L, Enderlein J, Extermann J, Fricke-Begemann T, Marowsky G, Wolf JP (2010) Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles. Opt Express 18:23218–23225CrossRefADSGoogle Scholar
  14. 14.
    Extermann J, Béjot P, Bonacina L, Mugnier Y, Le Dantec R, Mazingue T, Galez C, Wolf JP (2009) An inexpensive nonlinear medium for intense ultrabroadband pulse characterization. Appl Phys B 97:537–540CrossRefADSGoogle Scholar
  15. 15.
    Le Xuan L, Brasselet S, Treussart F, Roch JF,,Marquier F, Chauvat D, Perruchas S, Tard C, Gacoin, T (2006) Balanced homodyne detection of second-harmonic generation from isolated subwavelength emitters. Appl Phys Lett 89:121118CrossRefADSGoogle Scholar
  16. 16.
    Pu Y, Centurion M, Psaltis D (2008) Harmonic holography: a new holographic principle. Appl Opt 47:A103–A110CrossRefADSGoogle Scholar
  17. 17.
    Hsieh CL, Pu Y, Grange R, Laporte G, Psaltis D (2010) Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt Express 18:20723–20731CrossRefADSGoogle Scholar
  18. 18.
    Hsieh CL, Pu Y, Grange R, Psaltis D (2010) Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt Express 18:12283–12290CrossRefGoogle Scholar
  19. 19.
    Squier JA, Muller M, Brakenhoff GJ, Wilson KR (1998) Third harmonic generation microscopy. Opt Express 3:315–324CrossRefADSGoogle Scholar
  20. 20.
    Dudovich N, Oron D, Silberberg Y (2002) Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512–514CrossRefADSGoogle Scholar
  21. 21.
    von Vacano B, Wohlleben W, Motzkus M (2006) Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy. Opt Lett 31:413–415CrossRefADSGoogle Scholar
  22. 22.
    Ogilvie JP, Debarre D, Solinas X, Martin JL, Beaurepaire E, Joffre M (2006) Use of coherent control for selective two-photon fluorescence microscopy in live organisms. Opt Express 14:759–766CrossRefADSGoogle Scholar
  23. 23.
    Aeschlimann M, Bauer M, Bayer D, Brixner T, Cunovic S, Dimler F, Fischer A, Pfeiffer W, Rohmer M, Schneider C, Steeb F, Struber C, Voronine DV (2010) Spatiotemporal control of nanooptical excitations. Proc Natl Acad Sci U S A 107:5329–5333CrossRefADSGoogle Scholar
  24. 24.
    Fuchs U, Zeitner UD, Tunnermann A (2005) Ultra-short pulse propagation in complex optical systems. Opt Express 13:3852–3861CrossRefADSGoogle Scholar
  25. 25.
    Tal E, Oron D, Silberberg Y (2005) Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Opt Lett 30:1686–1688CrossRefADSGoogle Scholar
  26. 26.
    Muller M, Squier J, Brakenhoff GJ (1995) Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by 2-photon absorption. Opt Lett 20:1038–1040CrossRefADSGoogle Scholar
  27. 27.
    Brixner T, De Abajo FJG, Spindler C, Pfeiffer W (2006) Adaptive ultrafast nano-optics in a tight focus. Appl Phys B-Lasers Opt 84:89–95CrossRefADSGoogle Scholar
  28. 28.
    Amat-Roldan I, Cormack IG, Loza-Alvarez P, Artigas D (2004) Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens. Opt Lett 29:2282–2284CrossRefADSGoogle Scholar
  29. 29.
    Bowlan P, Gabolde P, Trebino R (2007) Directly measuring the spatio-temporal electric field of focusing ultrashort pulses. Opt Express 15:10219–10230CrossRefADSGoogle Scholar
  30. 30.
    Magouroux T, Extermann J, Hoffmann P, Mugnier Y, Le Dantec R, Jaconi M, Kasparian C, Ciepielewski D, Bonacina L, Wolf JP (2012) High-speed tracking of murine cardiacstem cells by harmonic nanodoublers. Small 8(17):2752–2756CrossRefGoogle Scholar
  31. 31.
    Vunjak-Novakovic G, Godier-Furnemont AFG, Martens TP, Koeckert MS, Wan L, Parks J, Arai K, Zhang GP, Hudson B, Homma S (2011) Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A 108:7974–7979CrossRefADSGoogle Scholar
  32. 32.
    Tannor DJ, Kosloff R, Rice SA (1986) Coherent pulse sequence induced control of selectivity of reactions – exact quantum-mechanical calculations. J Chem Phys 85:5805–5820CrossRefADSGoogle Scholar
  33. 33.
    Tannor DJ, Rice SA (1985) Control of selectivity of chemical-reaction via control of wave packet evolution. J Chem Phys 83:5013–5018CrossRefADSGoogle Scholar
  34. 34.
    Judson RS, Rabitz H (1992) Teaching lasers to control molecules. Phys Rev Lett 68:1500–1503CrossRefADSGoogle Scholar
  35. 35.
    Warren WS, Rabitz H, Dahleh M (1993) Coherent control of quantum dynamics – the dream is alive. Science 259:1581–1589MathSciNetCrossRefzbMATHADSGoogle Scholar
  36. 36.
    Weiner AM (2000) Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71:1929–1960CrossRefADSGoogle Scholar
  37. 37.
    Bonacina L, Extermann J, Rondi A, Boutou V, Wolf JP (2007) Multiobjective genetic approach for optimal control of photoinduced processes. Phys Rev A 76:023408CrossRefADSGoogle Scholar
  38. 38.
    Dantus M, Lozovoy VV (2004) Experimental coherent laser control of physicochemical processes. Chem Rev 104:1813–1859CrossRefGoogle Scholar
  39. 39.
    Levis RJ, Menkir GM, Rabitz H (2001) Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292:709–713CrossRefADSGoogle Scholar
  40. 40.
    Brixner T, Damrauer NH, Niklaus P, Gerber G (2001) Photoselective adaptive femtosecond quantum control in the liquid phase. Nature 414:57–60CrossRefADSGoogle Scholar
  41. 41.
    Brixner T, Gerber G (2003) Quantum control of gas-phase and liquid-phase femtochemistry. Chemphyschem 4:418–438CrossRefGoogle Scholar
  42. 42.
    Boutou V, Favre C, Hill SC, Pan YL, Chang RK, Wolf JP (2002) Backward enhanced emission from multiphoton processes in aerosols. Appl Phys B-Lasers Opt 75:145–152CrossRefADSGoogle Scholar
  43. 43.
    Favre C, Boutou V, Hill SC, Zimmer W, Krenz M, Lambrecht H, Yu J, Chang RK, Woeste L, Wolf JP (2002) White-light nanosource with directional emission. Phys Rev Lett 89:035002CrossRefADSGoogle Scholar
  44. 44.
    Hill SC, Boutou V, Yu J, Ramstein S, Wolf JP, Pan YL, Holler S, Chang RK (2000) Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities. Phys Rev Lett 85:54–57CrossRefADSGoogle Scholar
  45. 45.
    Pan YL, Hill SC, Wolf JP, Holler S, Chang RK, Bottiger JR (2002) Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan. Appl Opt 41: 2994–2999CrossRefADSGoogle Scholar
  46. 46.
    Kasparian J, Frejafon E, Rambaldi P, Yu J, Ritter P, Viscardi P, Wolf JP (1998) Characterization of urban aerosols using SEM-microscopy, X-ray analysis and lidar measurements. Atmos Env 32(17):2957–2967CrossRefGoogle Scholar
  47. 47.
    Iketaki Y, Watanabe T, Ishiuchi S, Sakai M, Omatsu T, Yamamoto K, Fujii M, Watanabe, T (2003) Investigation of the fluorescence depletion process in the condensed phase; application to a tryptophan aqueous solution. Chem Phys Lett 372:773–778CrossRefADSGoogle Scholar
  48. 48.
    Courvoisier F, Bonacina L, Boutou V, Guyon L, Bonnet C, Thuillier B, Extermann J, Roth M, Rabitz H, Wolf JP (2008) Identification of biological microparticles using ultrafast depletion spectroscopy. Faraday Discuss 137:37–49CrossRefADSGoogle Scholar
  49. 49.
    Kasparian J, Rodriguez M, Mejean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andre YB, Mysyrowicz A, Sauerbrey R, Wolf JP, Woste L (2003) White-light filaments for atmospheric analysis. Science 301:61–64CrossRefADSGoogle Scholar
  50. 50.
    Mejean G, Kasparian J, Yu J, Frey S, Salmon E, Wolf JP (2004) Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system. Appl Phys B-Lasers Opt 78:535–537CrossRefADSGoogle Scholar
  51. 51.
    Dixon PB, Hahn DW (2004) Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy. Anal Chem 77:631–638CrossRefGoogle Scholar
  52. 52.
    Morel S, Leone N, Adam P, Amouroux J (2003) Detection of bacteria by time-resolved laser-induced breakdown spectroscopy. Appl Opt 42:6184–6191CrossRefADSGoogle Scholar
  53. 53.
    Baudelet M, Guyon L, Yu J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett 88:063901CrossRefADSGoogle Scholar
  54. 54.
    Baudelet M, Guyon L, Yu J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime. J Appl Phys 99:084701CrossRefADSGoogle Scholar
  55. 55.
    Baudelet M, Yu J, Bossu M, Jovelet J, Wolf JP, Amodeo T, Frejafon E, Laloi P (2006) Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett 89:163903CrossRefADSGoogle Scholar
  56. 56.
    Li BQ, Rabitz H, Wolf JP (2005) Optimal dynamic discrimination of similar quantum systems with time series data. J Chem Phys 122:154103CrossRefADSGoogle Scholar
  57. 57.
    Roslund J, Roth M, Guyon L, Boutou V, Courvoisier F, Wolf J-P, Rabitz H (2011) Resolution of strongly competitive product channels with optimal dynamic discrimination: application to flavins. J Chem Phys 134:034511CrossRefADSGoogle Scholar
  58. 58.
    Rondi A, Extermann J, Bonacina L, Weber SM, Wolf JP (2009) Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet. Appl Phys B-Lasers Opt 96:757–761CrossRefADSGoogle Scholar
  59. 59.
    Weber S, Barthelemy M, Chatel B (2010) Direct shaping of tunable UV ultra-short pulses. Appl Phys B-Lasers Opt 98:323–326CrossRefADSGoogle Scholar
  60. 60.
    Kiselev D, Kraus PM, Bonacina L, Wörner HJ, Wolf JP (2012) Direct amplitude shaping of high harmonics in the extreme ultraviolet. Opt Express 20(23):25843–25849CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.GAP-BiophotonicsUniversity of GenevaGeneva 4Switzerland

Personalised recommendations