Incandescent Lamp-Like White-Light Emission from Doped and Undoped Oxide Nanopowders

  • Maura Cesaria
  • Gokhan Bilir
  • Gönül Özen
  • Marco Bettinelli
  • John Collins
  • Fabio Piccinelli
  • Baldassare Di Bartolo
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


We report the production of a broad band emission (ranging from 400 to 900 nm) following the monochromatic infrared light (803.5 nm) continuous wave excitation of either nominally un-doped or Nd-doped up to 20 % yttrium oxide (Y2O3) nanopowders, Y3Al5O12 (YAG) and Cr3+ doped Gd3Ga5O12 (GGG) nano-crystallites. Our experimental results indicate that such emission feature is (i) a nano-scale phenomenon, (ii) demands a threshold pumping power, (iii) cannot be ascribed to an overlap of sharp emission bands in the un-doped case and, (iv) even if assisted by the dopant presence, is a host matrix-related process. In the case of the Y 2O3-based samples, we demonstrate the possibility to obtain “warm” white light with high efficiency and color rendering index approaching the theoretical limit with an alternative approach. Our experimental results make our white light emission very interesting at both fundamental and applicative levels and may open the way to an alternative route with respect to incandescent lamps.


Incandescent Lamp Correlate Color Temperature White Light Emission Color Render Index Broadband Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Edison T (1880) Electric lamp. US Patent 223,898Google Scholar
  2. 2.
    The IES Nomenclature Committee and American National Standards Institute (2010) Nomenclature and definitions for illuminating engineering. Illuminating Engineering Society of North AmericaGoogle Scholar
  3. 3.
    Hunt RW (1991) Measuring colour. Ellis Horwood, Hemel Hempsted, pp 38–109Google Scholar
  4. 4.
    Central Bureau Of the CIE, Vienna, Austria (1995) Method of measuring and specifying colour rendering properties of light sources, CIE Publication 13.3-1995. Color Res Appl 20:212–212Google Scholar
  5. 5.
    Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913CrossRefADSGoogle Scholar
  6. 6.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541CrossRefADSGoogle Scholar
  7. 7.
    Zhu M, Yang C (2013) Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem Soc Rev 42:4963–4976CrossRefGoogle Scholar
  8. 8.
    Kido J, Kimura M, Nagai K (1995) Multilayer white light-emitting organic electroluminescent device. Science 267(5202):1332–1334CrossRefADSGoogle Scholar
  9. 9.
    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234–238CrossRefADSGoogle Scholar
  10. 10.
    Reineke S, Thomschke M, Lüssem B, Leo K (2013) White organic light-emitting diodes: status and perspective. Rev Mod Phys 85:1245–1293CrossRefADSGoogle Scholar
  11. 11.
    Zhou G, Wong W-Y, Suo S (2010) Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). J Photochem Photobiol C Photochem Rev 11(4):133–156CrossRefGoogle Scholar
  12. 12.
    Kawamura Y, Goushi K, Brooks J, Brown JJ, Sasabe H, Adachi C (2005) 100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films. Appl Phys Lett 86(7):071104CrossRefADSGoogle Scholar
  13. 13.
    Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154CrossRefADSGoogle Scholar
  14. 14.
    Holder E, Langeveld BMW, Schubert US (2005) New trends in the use of transition metal-ligand complexes for applications in electroluminescent devices. Adv Mater 17:1109–1121CrossRefGoogle Scholar
  15. 15.
    Wong W-Y, Ho C-L (2009) Functional metallophosphors for effective charge carrier injection/transport: new robust oled materials with emerging applications. J Mater Chem 19:4457–4482CrossRefGoogle Scholar
  16. 16.
    Jeong HS, Kim SH, Lee KS, Jeong JM, Yoo TW, Kwon MS, Yoo KH, Kim TW (2013) Optical properties of white organic light-emitting devices fabricated utilizing a mixed CaAl12O19:Mn​4+ and Y3Al5O12:Ce​3+ color conversion layer. J Nanosci Nanotechnol 13(6):4394–4397. 2013-06-01T00:00:00Google Scholar
  17. 17.
    Mottier P (2010) LED for lighting applications. WileyGoogle Scholar
  18. 18.
    Lin CC, Liu R-S (2011) Advances in phosphors for light-emitting diodes. J Phys Chem Lett 2(11):1268–1277CrossRefGoogle Scholar
  19. 19.
    Wang J, Tanner PA (2010) Upconversion for white light generation by a single compound. J Am Chem Soc 132(3):947–949. PMID: 2002(5211)Google Scholar
  20. 20.
    Wang J, Hao JH, Tanner PA (2010) Luminous and tunable white-light upconversion for yag (yb3al5o12) and (yb,y)2o3 nanopowders. Opt Lett 35:3922–3924CrossRefADSGoogle Scholar
  21. 21.
    Mahalingam V, Mangiarini F, Vetrone F, Venkatramu V, Bettinelli M, Speghini A, Capobianco JA (2008) Bright white upconversion emission from Tm​3+/Yb​3+/Er​3+-doped Lu3Ga5O12 nanocrystals. J Phys Chem C 112(46):17745–17749CrossRefGoogle Scholar
  22. 22.
    Redmond S (2004) Multiple scattering and nonlinear thermal emission of Yb​3+, Er3+:Y2O3 nanopowders. J Appl Phys 95(8):4069CrossRefADSGoogle Scholar
  23. 23.
    Strek W, Marciniak L, Bednarkiewicz A, Lukowiak A, Wiglusz R, Hreniak D (2011) White emission of lithium ytterbium tetraphosphate nanocrystals. Opt Express 19:14083–92CrossRefADSGoogle Scholar
  24. 24.
    Strek W, Marciniak L, Hreniak D, Lukowiak A (2012) Anti-Stokes bright yellowish emission of NdAlO3 nanocrystals. J Appl Phys 111(2):024305CrossRefADSGoogle Scholar
  25. 25.
    Verma R, Rai S (2013) Continuum emission in Nd​3+/Yb​3+ co-doped Ca12Al14O33 phosphor: charge transfer state luminescence versus induced optical heating. Chem Phys Lett 559(0):71–75CrossRefADSGoogle Scholar
  26. 26.
    Cao C, Qin W, Zhang J, Wang Y, Wang G, Wei G, Zhu P, Wang L, Jin L (2008) Up-conversion white light of \(\mathrm{Tm}^{\!3+}/\mathrm{Er}^{3+}/\mathrm{Yb}^{\!3+}\) tri-doped CaF2 phosphors. Opt Commun 281(6):1716–1719CrossRefADSGoogle Scholar
  27. 27.
    Yang LW, Han HL, Zhang YY, Zhong JX (2009) White emission by frequency up-conversion in Yb​3+-Ho​3+-Tm​3+ triply doped hexagonal nayf4 nanorods. J Phys Chem C 113(44):18995–18999CrossRefGoogle Scholar
  28. 28.
    Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu​2+. Phys Rev Lett 7:229–231CrossRefADSGoogle Scholar
  29. 29.
    Pimputkar S, Speck JS, DenBaars SP, Nakamura S (2009) Prospects for LED lighting. Nat Photonics 3:180–182CrossRefADSGoogle Scholar
  30. 30.
    Hashimoto T, Wu F, Speck JS, Nakamura S (2007) A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nat Mater 6:568–571CrossRefGoogle Scholar
  31. 31.
    Tu C-C, Zhang Q, Lin LY, Cao G (2011) Brightly photoluminescent phosphor materials based on silicon quantum dots with oxide shell passivation. Opt Express 20:A69CrossRefGoogle Scholar
  32. 32.
    Peng M, Wondraczek L (2010) Photoluminescence of Sr(2)P(2)O(7):Bi(2+) as a red phosphor for additive light generation. Opt Lett 35:2544–6CrossRefADSGoogle Scholar
  33. 33.
    Kim J-P, Jang M-S, Kim W-H, Joo J-Y, Cho J-H, Kim D-W, Song S-B (2012) Improvement in the color uniformity of {LED} by microspheres generated from phase separation. Opt Mater 34(9):1614–1617CrossRefADSGoogle Scholar
  34. 34.
    Bredol M, Kynast U, Ronda C (1991) Designing luminescent materials. Adv Mater 3:361–367CrossRefGoogle Scholar
  35. 35.
    Zhang X, Zhang J, Huang J, Tang X, Gong M (2010) Synthesis and luminescence of eu2+-doped alkaline-earth apatites for application in white {LED}. J Lumin 130(4):554–559CrossRefGoogle Scholar
  36. 36.
    Lei Z, Xia G, Ting L, Xiaoling G, Ming LQ, Guangdi S (2007) Color rendering and luminous efficacy of trichromatic and tetrachromatic led-based white {LEDs}. Microelectron J 38(1):1–6CrossRefGoogle Scholar
  37. 37.
    Graves H, Ticleanu C (2011) LED lighting: a review of the current market and future developments. Building Research EstablishmentGoogle Scholar
  38. 38.
    Marciniak L, Strek W, Bednarkiewicz A, Lukowiak A, Hreniak D (2011) Bright upconversion emission of Nd​3+ in LiLa1−xNdxP4O12 nanocrystalline powders. Opt Mater 33:1492–1494CrossRefADSGoogle Scholar
  39. 39.
    Strek W, Marciniak L, Bednarkiewicz A, Lukowiak A, Hreniak D, Wiglusz R (2011) The effect of pumping power on fluorescence behavior of LiNdP4O12 nanocrystals. Opt Mater 33:1097–1101CrossRefADSGoogle Scholar
  40. 40.
    Atabaev T, Hwang Y-H, Kim H-K (2012) Color-tunable properties of Eu​3+- and Dy​3+-codoped Y2O3 phosphor particles. Nanoscale Res Lett 7(1):1–7CrossRefGoogle Scholar
  41. 41.
    Roura P, Costa J (2002) Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory. Eur J Phys 23(2):191CrossRefGoogle Scholar
  42. 42.
    Roura P, Costa J, López-de Miguel M, Garrido B, Fort J, Morante J, Bertran E (1998) Black-body emission from nanostructured materials. J Lumin 80:519–522CrossRefGoogle Scholar
  43. 43.
    Atabaev T, Hwang Y-H, Kim H-K (2012) Color-tunable properties of Eu​3+- and Dy​3+-codoped Y2O3 phosphor particles. Nanoscale Res Lett 7(1):1–7 (2012)CrossRefGoogle Scholar
  44. 44.
    Qin X, Yokomori T, Ju Y (2007) Flame synthesis and characterization of rare-earth (Er3+, Ho​3+, and Tm​3+) doped upconversion nanophosphors. Appl Phys Lett 90(7):073104CrossRefADSGoogle Scholar
  45. 45.
    Tu D, Liang Y, Liu R, Li D (2011) Eu/Tb ions co-doped white light luminescence Y2O3 phosphors. J Lumin 131:2569–2573CrossRefGoogle Scholar
  46. 46.
    Atabaev TS, Vu HHT, Piao Z, Hwang Y-H, Kim H-K (2012) Tailoring the luminescent properties of Gd2O3:Tb​3+ phosphor particles by codoping with Al​3+ ions. J Alloy Compd 541(0):263–268CrossRefGoogle Scholar
  47. 47.
    Flores-Gonzalez M, Ledoux G, Roux S, Lebbou K, Perriat P, Tillement O (2005) Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method. J Solid State Chem 178:989–997CrossRefADSGoogle Scholar
  48. 48.
    Wickersheim KA, Lefever RA (1961) Infrared transmittance of crystalline yttrium oxide and related compounds. J Opt Soc Am 51:1147CrossRefGoogle Scholar
  49. 49.
    Nigara Y (1968) Measurement of the optical constants of yttrium oxide. Jpn J Appl Phys 7(4):404–408CrossRefADSGoogle Scholar
  50. 50.
    Tomiki T, Tamashiro J, Tanahara Y, Yamada A, Fukutani H, Miyahara T, Kato H, Shin S, Ishigame M (1986) Optical spectra of Y2O3 single crystals in vuv. J Phys Soc Jpn 55(12):4543–4549CrossRefADSGoogle Scholar
  51. 51.
    Atabaev TS, Lee JH, Han D-W, Hwang Y-H, Kim H-K (2012) Cytotoxicity and cell imaging potentials of submicron color-tunable yttria particles. J Biomed Mater Res Part A 100A(9):2287–2294Google Scholar
  52. 52.
    Das GK, Tan TTY (2008) Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes. J Phys Chem C 112(30):11211–11217CrossRefGoogle Scholar
  53. 53.
    Balda R, Sanz M, Mendioroz A, Fernández J, Griscom LS, Adam J-L (2001) Infrared-to-visible upconversion in Nd​3+-doped chalcohalide glasses. Phys Rev B 64:144101CrossRefADSGoogle Scholar
  54. 54.
    Russell D, Holliday K (2001) Upconversion and energy transfer dynamics in Nd​3+:KLiYF5. Opt Commun 191:277–294CrossRefADSGoogle Scholar
  55. 55.
    Konrad A, Herr U, Tidecks R, Kummer F, Samwer K (2001) Luminescence of bulk and nanocrystalline cubic yttria. J Appl Phys 90(7):3516CrossRefADSGoogle Scholar
  56. 56.
    Bordun O (2002) Influence of oxygen vacancies on the luminescence spectra of Y2O3 thin films. J Appl Spectrosc 69(3):430–433CrossRefGoogle Scholar
  57. 57.
    Speghini A, Piccinelli F, Bettinelli M (2011) Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family. Opt Mater 33:247–257CrossRefADSGoogle Scholar
  58. 58.
    Geusic JE, Marcos HM, Van Uitert LG (1964) Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl Phys Lett 4(10):182–184CrossRefADSGoogle Scholar
  59. 59.
    Zych E, Brecher C, Glodo J (2000) Kinetics of cerium emission in a YAG:Ce single crystal: the role of traps. J Phys Condens Matter 12(8):1947CrossRefADSGoogle Scholar
  60. 60.
    Rotman SR, Warde C (1985) Defect luminescence in cerium-doped yttrium aluminum garnet. J Appl Phys 58(1):522CrossRefADSGoogle Scholar
  61. 61.
    Dubinskii MA, Schepler KL, Semashko VV, Abdulsabirov RY, Korableva SL, Naumov AK (1998) Spectroscopic analogy approach in selective search for new Ce​3+ -activated all-solid-state tunable ultraviolet laser materials. J Modern Opt 45:221–226CrossRefADSGoogle Scholar
  62. 62.
    Selim FA, Solodovnikov D, Weber MH, Lynn KG (2007) Identification of defects in Y3Al5O12 crystals by positron annihilation spectroscopy. Appl Phys Lett 91(10):104105CrossRefADSGoogle Scholar
  63. 63.
    Lupei A, Lupei V, Gheorghe C, Ikesue A, Enculescu M (2011) Spectroscopic characteristics of Dy​3+ doped Y3Al5O12 transparent ceramics. J Appl Phys 110(8):083120CrossRefADSGoogle Scholar
  64. 64.
    Stevenson AJ, Bittel BC, Leh CG, Li X, Dickey EC, Lenahan PM, and Messing GL (2011) Color center formation in vacuum sintered Nd3Y3−3 xAl5O12 transparent ceramics. Appl Phys Lett 98(5):051906CrossRefADSGoogle Scholar
  65. 65.
    Chao W-H, Wu R-J, Wu T-B (2010) Structural and luminescent properties of YAG:Ce thin film phosphor. J Alloy Compd 506:98–102CrossRefGoogle Scholar
  66. 66.
    Varney CR, Reda SM, Mackay DT, Rowe MC, Selim FA (2011) Strong visible and near infrared luminescence in undoped YAG single crystals. AIP Adv 1(4):042170 (reference therein)Google Scholar
  67. 67.
    Zhao G, Li T, He X, Xu J (2002) Preparation of gadolinium gallium garnet polycrystalline material by coprecipitation method. Mater Lett 56:1098–1102CrossRefGoogle Scholar
  68. 68.
    Ozen G, Collins J, Bettinelli M, Bartolo BD (2013) Luminescence of {Y3AL5O12} nano-particles doped with praseodymium ions. Opt Mater 35(7):1360–1365CrossRefADSGoogle Scholar
  69. 69.
    Pechini P (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent 3,330,697Google Scholar
  70. 70.
    Mazur P, Hreniak D, Niittykoski J, Strek W, Hölsä J (2005) Formation of nanostructured Tb​3+-doped yttrium aluminium garnets by the glycol route. Mater Sci Pol 23(1):253–260Google Scholar
  71. 71.
    Hirata E, Tamagawa K, Ohki Y (2010) Cr3+ impurities and photoluminescence in LaAlO3. Jpn J Appl Phys 49(9R):091102CrossRefADSGoogle Scholar
  72. 72.
    Olenovich N, Gromadskaya G, Anbinder I (1975) Spectral determination of impurities in some pure aluminum compounds. J Appl Spectrosc 23(3):1161–1163CrossRefADSGoogle Scholar
  73. 73.
    Eapen J, Rusconi R, Piazza R, Yip S (2010) The Classical Nature of Thermal Conduction in Nanofluids. J Heat Transf 132:102402CrossRefGoogle Scholar
  74. 74.
    Desai TG (2011) Thermal transport in nanoclusters. Appl Phys Lett 98(19):193107CrossRefADSGoogle Scholar
  75. 75.
    Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Z Phys Chem 65:1–35Google Scholar
  76. 76.
    Wang J, Duan H, Huang Z, Karihaloo B (2006) A scaling law for properties of nano-structured materials. Proc R Soc A Math Phys Eng Sci 462(2069):1355–1363 (reference therein)Google Scholar
  77. 77.
    Takagi M (1954) Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Jpn 9(3):359–363CrossRefADSGoogle Scholar
  78. 78.
    Martynenko Y, Ognev L (2005) Thermal radiation from nanoparticles. Tech Phys 50(11):1522–1524CrossRefGoogle Scholar
  79. 79.
    Wuttke C, Rauschenbeutel A (2013) Thermalization via heat radiation of an individual object thinner than the thermal wavelength. Phys Rev Lett 111:024301CrossRefADSGoogle Scholar
  80. 80.
    Planck M (1901) Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik 309(3):553–563CrossRefADSGoogle Scholar
  81. 81.
    Ferguson L, Dogan F (2001) Spectrally selective, matched emitters for thermophotovoltaic energy conversion processed by tape casting. J Mater Sci 36(1):137–146CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Maura Cesaria
    • 1
  • Gokhan Bilir
    • 2
    • 3
  • Gönül Özen
    • 2
  • Marco Bettinelli
    • 4
  • John Collins
    • 5
  • Fabio Piccinelli
    • 4
  • Baldassare Di Bartolo
    • 3
  1. 1.Department of Mathematics and Physics “E. De Giorgi”Universitá del SalentoLecceItaly
  2. 2.Department of PhysicsIstanbul Technical UniversityIstanbulTurkey
  3. 3.Department of PhysicsBoston CollegeChestnut HillUSA
  4. 4.Luminescent Materials LaboratoryUniversitďi VeronaVeronaItaly
  5. 5.Department of PhysicsWheaton CollegeNortonUSA

Personalised recommendations