Measuring Affect and Emotions

Part of the Handbooks of Sociology and Social Research book series (HSSR)


Theoretical advances in the sociology of emotions depend on precisely measured constructs. This chapter begins with a discussion of key the features of affect and emotion invoked by various theories in the sociology of emotions, in an effort to identify the measurement needs of this field. The range of theories in the sociology of emotions requires methods of measuring affect associated with cultural symbols and feeling states that are (1) experienced versus expressed, (2) discrete versus dimensional, and (2) directed versus diffuse. Importantly, the utility and testability of some sociological theories would benefit also from measures that minimally intrude into ongoing social interaction. These requirements combine to form a daunting task. This chapter assesses evidence concerning the validity of various classic and emerging methods of measuring affect and emotion. Specifically, this chapter reviews methods organized around three broad approaches—self-report, physiological measurement, and observational—highlighting their theoretical utility along the dimensions described above.


Emotion measurement Self-report Neural Physiological Observational 


  1. Acerbi, A., Vasileios, L., Philip G., Bentley, R. A. (2013). The expression of emotions in 20th century books. PLOS One, 8, e59030.Google Scholar
  2. Anbar, M. (2002). Assessment of physiologic and pathologic radiative heat dissipation using dynamic infrared imaging. Annals of the New York Academy of Sciences, 972, 111–118.Google Scholar
  3. Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1, 28–58.Google Scholar
  4. Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavioral Therapy and Experimental Psychiatry, 25, 49–59.Google Scholar
  5. Bradley, M. M., & Lang, P. J. (2000). Affective reactions to acoustic stimuli. Psychophysiology, 37, 204–215.Google Scholar
  6. Brondolo, E., Rosen, R. C., Kostis, J. B., & Schwartz, J. E. (1999). relationship of physical symptoms and mood to perceived and actual blood pressure in hypertensive men: A repeated-measures design. Psychosomatic Medicine, 61, 311–318.Google Scholar
  7. Buchanan, T. W., & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26, 307–317.Google Scholar
  8. Burke, P. J., & Cast, A. D. (1997). Stability and change in the gender identities of newly married couples. Social Psychology Quarterly, 60, 277–290.Google Scholar
  9. Burke, P. J., & Stets, J. E. (2009). Identity theory. New York: Oxford University Press.Google Scholar
  10. Burke, P. J., & Tully, J. C. (1977). The measurement of role identity. Social Forces, 55, 881–897.Google Scholar
  11. Cacioppo, J. T., Petty, R. E., Losch, M. E., & Kim, H. S. (1986). Electromyographic activity over facial muscle regions can differentiate the valence and intensity of affective reactions. Journal of Personality and Social Psychology, 50, 260–268.Google Scholar
  12. Cacioppo, J. T., Berntson, G. G., Larsen, J. T., Poehlmann, K. M., & Ito, T. A. (2000). The psychophysiology of emotion. In M. Lewis & J. M. Haviland (Eds.), Handbook of emotions (pp. 173–191). New York: Guilford Press.Google Scholar
  13. Cahill, L., Prins, B., Weber, M., & McGaugh, J. L. (1994). Beta-adrenergic activation and memory for emotional events. Nature, 371, 702–704.Google Scholar
  14. Carlson, J. G., & Hatfield, E. (1992). Psychology of emotion. Fort Worth: Harcourt Brace Jovanovich.Google Scholar
  15. Carney, D. R., & Mason, M. F. (2010). Decision making and testosterone: When the ends justify the means. Journal of Experimental Social Psychology, 46, 668–671.Google Scholar
  16. Carter, C. S. (2003). Developmental consequences of oxytocin. Physiology and Behavior, 79, 383–397.Google Scholar
  17. Carter, C. S., Grippo, A. J., Pournajafi-Nazarloo, H., Michael, G. R., & Porges, S. W. (2008). Oxytocin, vasopressin and sociality. Progress in Brain Research, 170, 331–336.Google Scholar
  18. Chapman, R. M., McCrary, J. W., Chapman, J. A., & Bragdon, H. R. (1978). Brain responses related to semantic meaning. Brain and Language, 5, 195–205.Google Scholar
  19. Chapman, R. M., McCrary, J. W., Chapman, J. A., & Martin, J. K. (1980). Behavioral and neural analyses of connotative meaning: Word classes and rating scales. Brain and Language, 11, 319–339.Google Scholar
  20. Clark, C. (1997). Misery and company: Sympathy in everyday life. Chicago: University of Chicago Press.Google Scholar
  21. Coccaro, E. F., Kavoussi, R. J., Hauger, R. L., Cooper, T. B., & Ferris, C. F. (1998). Cerebrospinal fluid vasopressin levels: Correlates with aggression and serotonin function in personality-disordered subjects. Archives of General Psychiatry, 55, 708–714.Google Scholar
  22. Codispoti, M., Bradley, M. M., & Lang, P. J. (2001). Affective reactions to briefly presented pictures. Psychophysiology, 38, 474–478.Google Scholar
  23. Collins, R. (2004). Interaction ritual chains. Princeton: Princeton University Press.Google Scholar
  24. Cools, R., Nakamura, K., & Daw, N. D. (2011). Serotonin and dopamine: Unifying affective, activational, and decision functions. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 36, 98–113.Google Scholar
  25. Cuddy, A. J., Fiske, S. T., Kwan, V. S., Glick, P., Demoulin, S., Leyens, J. P., Bond, M. H., Croizet, J. C., Ellemers, N., Sleebos, E., Htun, T. T., Kim, H. J., Maio, G., Perry, J., Petkova, K., Todorov, V., Rodrıguez-Bailon, R., Morales, E., Moya, M., Palacios, M., Smith, V., Perez, R., Vala, J., & Ziegler, R. (2009). Stereotype content model across cultures: Towards universal similarities and some differences. British Journal of Social Psychology, 48, 1–33.Google Scholar
  26. Denson, T. F., Spanovic, M., & Miller, N. (2009). Cognitive appraisals and emotions predict cortisol and immune responses: A meta-analysis of acute laboratory social stressors and emotion inductions. Psychological Bulletin, 135, 823–853.Google Scholar
  27. Derntl, B., Kryspin-Exner, I., Fernbach, E., Moser, E., & Habel, U. (2008). Emotion recognition accuracy in healthy young females is associated with cycle phase. Hormones and Behavior, 53, 90–95.Google Scholar
  28. Derntl, B., Windischberger, C., Robinson, S., Kryspin-Exner, I., Gur, R. C., Moser, E., & Habel, U. (2009). Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology, 34, 687–693.Google Scholar
  29. Domes, G., Heinrichs, M., Michel, A., Berger, C., & Herpertz, S. C. (2007). Oxytocin improves “mind-reading” in humans. Biological Psychiatry, 61, 731–733.Google Scholar
  30. Durkheim, E. (1912). The elementary forms of religious life. Chicago: University of Chicago Press.Google Scholar
  31. Eisenegger, C., Haushofer, J., & Fehr, E. (2011). The role of testosterone in social interaction. Trends in Cognitive Sciences, 15, 263–271.Google Scholar
  32. Ekman, P. (1992). Are there basic emotions? Psychological Review, 99, 550–553.Google Scholar
  33. Ekman, P. (1999). Basic emotions. In T. Dalgleish & M. Power (Eds.), Handbook of cognition and emotion (pp. 45–60). New York: Wiley.Google Scholar
  34. Ekman, P., & Friesen, W. V. (1975). Unmasking the face. Englewood Cliffs: Prentice Hall.Google Scholar
  35. Ekman, P., & Rosenberg, E. L. (Eds.). (1997). What the face reveals: Basic and applied studies of spontaneous expression using the facial action coding system (FACS). Oxford: Oxford University Press.Google Scholar
  36. Ekman, P., Friesen, W. V., & Ellsworth, P. (1972). Emotion in the human face: Guidelines for research and an integration of findings. New York: Pergamon Press.Google Scholar
  37. Ekman, P., Friesen, W. V., & Hager, J. C. (1978). Facial action coding system (FACS): A technique for the measurement of facial action. Palo Alto: Consulting Psychologists Press.Google Scholar
  38. Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. Oxford: Oxford University Press.Google Scholar
  39. Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representation and dynamics in neurobiological systems. Cambridge: MIT Press.Google Scholar
  40. Fiske, S. T., Cuddy, A. J. C., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype content: Competence and warmth respectively follow from perceived status and competition. Journal of Personality and Social Psychology, 82, 878–902.Google Scholar
  41. Fiske, S. T., Cuddy, A. J. C., & Glick, P. (2007). Universal dimensions of social cognition: Warmth and competence. Trends in Cognitive Sciences, 11, 77–83.Google Scholar
  42. Fontaine, J. R. J., Scherer, K. R., Roesch, E. B., & Ellsworth, P. C. (2007). The world of emotions is not two-dimensional. Psychological Science, 18(12), 1050–1057.Google Scholar
  43. Gellman, M., Spitzer, S., Ironson, G., Llabre, M., Saab, P., DeCarlo Pasin, R., Weidler, D. J., & Schneiderman, N. (1990). Posture, place, and mood effects on ambulatory blood pressure. Psychophysiology, 27, 544–551.Google Scholar
  44. Giardino, N. D., Lehrer, P. M., & Edelberg, R. (2002). Comparison of finger plethysmograph of ECG in the measurement of heart rate variability. Psychophysiology, 39, 246–253.Google Scholar
  45. Gonzaga, G. C., Turner, R. A., Keltner, D., Campos, B., & Altemus, M. (2006). romantic love and sexual desire in close relationships. Emotion (Washington, D. C.), 6, 163–179.Google Scholar
  46. Gordon, S. L. (1981). The sociology of sentiments and emotion. In M. P. Rosenberg & R. H. Turner (Eds.), Social psychology: Sociological perspectives. New York: Basic Books.Google Scholar
  47. Gray, J. A. (1994). Three fundamental emotion systems. In P. Ekman & R. J. Davidson (Eds.), The nature of emotion: Fundamental questions (pp. 243–247). New York: Oxford University Press.Google Scholar
  48. Haidt, J. (2003). The moral emotions. In R. J. Davidson, K. R. Scherer, & H. H. Goldsmith (Eds.), Handbook of affective sciences (pp. 852–870). Oxford: Oxford University Press.Google Scholar
  49. Hager, J. C., & Ekman, P. (1985). The asymmetry of facial actions is inconsistent with models of hemispheric specialization. Psychophysiology, 22(3), 307–318Google Scholar
  50. Heise, D. R. (2007). Expressive order: Confirming sentiments in social action. New York: Springer.Google Scholar
  51. Heise, D. R., & Calhan, C. (1995). Emotion norms in interpersonal events. Social Psychology Quarterly, 58, 223–240.Google Scholar
  52. Heise, D. R., & Weir, B. (1999). A test of symbolic interactionist predictions about emotions in imagined situations. Symbolic Interaction, 22, 129–161.Google Scholar
  53. Hietanen, J. K., Surakka, V., & Linnankoski, I. (1998). Facial electromyographic responses to vocal affect expressions. Psychophysiology, 35, 530–536.Google Scholar
  54. Hochschild, A. R. (1983). The managed heart: Commercialization of human feeling. Berkeley: University of California Press.Google Scholar
  55. Ijzerman, H., Gallucci, M., Pouw, W. T. J. L., Weigerber, S. C., Van Doesum, N. J., & Williams, K. D. (2012). Cold-blooded loneliness: Social exclusion leads to lower skin temperatures. Acta Psychologica, 140, 283–288.Google Scholar
  56. Institute of Medicine. (2001). Biobehavioral factors in health and disease. In Health and behavior: The interplay of biological, behavioral, and societal influences (pp. 37–86). Washington, DC: National Academies Press.Google Scholar
  57. Izard, C. E. (1992). Basic emotions, relations among emotions, and emotion-cognition relations. Psychological Review, 99, 561–565.Google Scholar
  58. Jacob, R. G., Thayer, J. F., Manuck, S. B., Muldoon, M. F., Tamres, L. K., Williams, D. M., Ding, Y., & Gatsonis, C. (1999). Ambulatory blood pressure responses and the circumplex model of mood: A 4-day study. Psychosomatic Medicine, 61, 319–333.Google Scholar
  59. Jasnow, A. M., Schulkin, J., & Pfaff, D. W. (2006). Estrogen facilitates fear conditioning and increases corticotropin-releasing hormone mrna expression in the central amygdala of female mice. Hormones and Behavior, 49, 197–205.Google Scholar
  60. Keltner, D., & Haidt, J. (1999). Social functions of emotions at four levels of analysis. Cognition and Emotion, 13, 505–521.Google Scholar
  61. Kemper, T. D. (1978). A social interactional theory of emotion. New York: Wiley.Google Scholar
  62. Kemper, T. D., & Collins, R. (1990). Dimensions of microinteraction. American Journal of Sociology, 96, 32–68.Google Scholar
  63. Keverne, E. B., & Curley, J. P. (2004). Vasopressin, oxytocin and social behaviour. Current Opinion in Neurobiology, 14, 777–783.Google Scholar
  64. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673–676.Google Scholar
  65. Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647.Google Scholar
  66. Lacey, J. I., & Lacey, B. C. (1970). Some autonomic–central nervous system interrelationships. In P. Black (Ed.), Physiological correlates of emotion (pp. 205–227). New York: Academic Press.Google Scholar
  67. Lawler, E. J. (2001). An affect theory of social exchange. American Journal of Sociology, 107, 321–352.Google Scholar
  68. Leary, T. (1957). Interpersonal diagnosis of personality. New York: Ronald Press.Google Scholar
  69. Leavitt, R. L., & Power, M. B. (1989). Emotional socialization in the postmodern era: Children in day care. Social Psychology Quarterly, 52, 35–43.Google Scholar
  70. LeDoux, J. E. (1986). Sensory systems and emotion: A model of affective processing. Integrative Psychiatry, 4, 237–243.Google Scholar
  71. Lee, H.-J., Macbeth, A. H., & Pagani, J. H. (2009). Oxytocin: The great facilitator of life. Progress In Neurobiology, 88, 127–151.Google Scholar
  72. Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 1–86.Google Scholar
  73. Lively, K. J. (2000). Reciprocal emotion management: Working together to maintain stratification in private law firms. Work and Occupations, 27, 32–63.Google Scholar
  74. Lively, K. J., & Powell, B. (2006). Emotional expression at work and at home: Domain, status or individual characteristics? Social Psychology Quarterly, 69, 17–38.Google Scholar
  75. Lizardo, O., & Collett, J. L. (2013). Embarrassment and social organization: A multiple identities model. Social Forces, 92(1), 353–375.Google Scholar
  76. Lofland, L. (1985). The social shaping of emotion: The case of grief. Symbolic Interaction, 8, 171–190.Google Scholar
  77. Maier, K. J., Waldstein, S. R., & Synowski, S. J. (2003). Relation of cognitive appraisal to cardiovascular reactivity, affect, and task engagement. Annals of Behavioral Medicine, 26, 32–41.Google Scholar
  78. Markovsky, B. (1988). Injustice and arousal. Social Justice Research, 2, 223–233.Google Scholar
  79. Masuda, T., & Nisbett, R. E. (2001). Attending holistically versus analytically: Comparing the context sensitivity of Japanese and Americans. Journal of Personality and Social Psychology, 81, 922–934.Google Scholar
  80. Masuda, T., Ellsworth, P. C., Mesquita, B., Leu, J., Tanida, S., & de Veerdonk, E. V. (2008). Placing the face in context: Cultural differences in perceiving emotions from facial behavior. Journal of Personality and Social Psychology, 94, 365–381.Google Scholar
  81. McCarthy, M. M. (1995). Estrogen modulation of oxytocin and its relation to behavior. Advances in Experimental Medicine and Biology, 395, 235–245.Google Scholar
  82. McFarland, R. A. (1985). Relationship of skin temperature changes to the emotions accompanying music. Biofeedback and Self-Regulation, 10, 255–267.Google Scholar
  83. Mead, G. H. (1934). Mind, self, and society: From the standpoint of a social behaviorist. Chicago: University of Chicago Press.Google Scholar
  84. Michelson, D., Stratakis, C., Hill, L., Reynolds, J., Galliven, E., Chrousos, G., Gold, P. (1996). Bone mineral density in women with depression. New England Journal of Medicine, 335, 1176–1181.Google Scholar
  85. Morgan, R. L., & Heise, D. R. (1988). Structure of emotions. Social Psychology Quarterly, 51, 19–31.Google Scholar
  86. Morhenn, V. B., Park, J. W., Piper, E., & Zak, P. J. (2008). Monetary sacrifice among strangers is mediated by endogenous oxytocin release after physical contact. Evolution and Human Behavior, 29, 375–383.Google Scholar
  87. Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: A meta-analysis. Cognitive, Affective, and Behavioral Neuroscience, 3, 207–233.Google Scholar
  88. Neumann, I. D., & Landgraf, R. (2012). Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends in Neurosciences, 35, 649–659.Google Scholar
  89. O’Carroll, R. E., Drysdale, E., Cahill, L., Shajahan, P., Ebmeier, K. P. (1999). Stimulation of the noradrenergic system enhances and blockade reduces memory for emotional material in man. Psychological Medicine, 29, 1083–1088.Google Scholar
  90. Osgood, C. E. (1952). The nature and measurement of meaning. Psychological Bulletin, 49, 197–237.Google Scholar
  91. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Urbana: University of Illinois Press.Google Scholar
  92. Osgood, C. E., May, W. H., & Miron, M. S. (1975). Cross-cultural universals of affective meaning. Urbana: University of Illinois Press.Google Scholar
  93. Pak, A., & Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and opinion mining. Paper presented at the annual meeting of the International Conference on Language Resources and Evaluation, 18 May 2010.Google Scholar
  94. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2, 1–135.Google Scholar
  95. Pavlidis, I., & Levine, J. A. (2002). Thermal image analysis for polygraph testing. Engineering in. Medicine and Biology Magazine, IEEE, 21, 56–64.Google Scholar
  96. Pavlidis, I., Eberhardt, N. L., & Levine, J. A. (2002). Seeing through the face of deception. Nature, 415, 35–35.Google Scholar
  97. Peeters, G. M., van Schoor, N. M., van Rossum, E. F., Visser, M., & Lips, P. (2008). The relationship between cortisol, muscle mass and muscle strength in older persons and the role of genetic variations in the glucocorticoid receptor. Clinical Endocrinology, 69, 673–682.Google Scholar
  98. Phan, K. L., Wager, T. D., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 2, 331–348.Google Scholar
  99. Piazza, J. R., Charles, S. T., Sliwinski, M. J., Mogle, J., & Almeida, D. M. (2013). Affective reactivity to daily stressors and long-term risk of reporting a chronic physical health condition. Annals of Behavioral Medicine, 45, 110–120.Google Scholar
  100. Pollard, T. M., & Schwartz, J. E. (2003). Are changes in blood pressure and total cholesterol related to changes in mood? An 18-month study of men and women. Health Psychology, 22, 47–53.Google Scholar
  101. Procter, R., Vis, F., & Voss, A. (2013). Reading the riots on twitter: Methodological innovation for the analysis of big data. International Journal of Social Research Methodology, 16, 197–214.Google Scholar
  102. Puri, C., Olson, L., Pavlidis, I., Levine, J., & Starren, J. (2005). StressCam: non-contact measurement of users’ emotional states through thermal imaging. Paper presented at the CHI ’05 extended abstracts on Human factors in computing systems, Portland, OR, USA.Google Scholar
  103. Reddy, D. S., O’Malley, B. W., Rogawski, M. A. (2005). Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology, 48, 14–24.Google Scholar
  104. Reitzes, D. C., & Burke, P. J. (1980). College student identity: Measurement and implications. Pacific Sociological Review, 23, 46–66.Google Scholar
  105. Roberts, R. J., & Weerts, T. C. (1982). Cardiovascular responding during anger and fear imagery. Psychological Reports, 50, 219–230.Google Scholar
  106. Robinson, M. D., & Barrett, L. F. (2010). Belief and feeling in self-reports of emotion: evidence for semantic infusion based on self-esteem. Self and Identity, 9, 87–111.Google Scholar
  107. Robinson, M. D., & Clore, G. L. (2002). Belief and feeling: Evidence for an accessibility model of emotional self-report. Psychological bulletin, 128, 934.Google Scholar
  108. Robinson, D. T., Smith-Lovin, L., & Tsoudis, O. (1994). Heinous crime or unfortunate accident? The effects of remorse on responses to mock criminal confessions. Social Forces, 73, 175–190.Google Scholar
  109. Robinson, D. T., Smith-Lovin, L., & Rogalin, C. (2004). Physiological measures of theoretical concepts: Some ideas for linking deflection and emotion to physical responses during interaction. Advances in Group Processes, 21, 77–115.Google Scholar
  110. Robinson, D. T., Smith-Lovin, L., & Wisecup, A. K. (2006). Affect control theory. In J. E. Stets & J. H. Turner (Eds.), Handbook of the sociology of emotions (pp. 179–202). New York: Springer.Google Scholar
  111. Robinson, D. T., Clay-Warner, J., Moore, C. D., Everett, T., Watts, A., Tucker, T. N., & Thai, C. (2012). Toward an unobtrusive measure of emotion during interaction: Thermal imaging techniques. Advances in Group Processes, 29, 225–266.Google Scholar
  112. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.Google Scholar
  113. Sayette, M. A., Cohn, J. F., Wertz, J. M., Perrott, M. A., & Parrott, D. J. (2001). A psychometric evaluation of the facial action coding system for assessing spontaneous expression. Journal of Nonverbal Behavior, 25, 167–185.Google Scholar
  114. Schauenburg, G., Ambrasat, J., Conrad, M., Schröder, T., & von Scheve, C. (2012). EEG-correlates of affective coherence in visually presented sentences describing social actions. Paper presented at Affect Control Theory Conference, 21 April, Nashville, Indiana.Google Scholar
  115. Scheff, T. J. (1988). Shame and conformity: The deference-emotion system. American Sociological Review, 53, 395–406.Google Scholar
  116. Scherer, K. R. (2001). Appraisal processes in emotion: Theory, methods, research. Oxford: Oxford University Press.Google Scholar
  117. Scherer, K. R., Abeles, R. P., & Fischer, C. S. (1975). Human aggression and conflict: Interdisciplinary perspectives. Englewood Cliffs: Prentice-Hall.Google Scholar
  118. Scholl, W. (2013). The socio-emotional basis of human interaction and communication: How we construct our social world. Social Science Information, 52, 3–33.Google Scholar
  119. Schröder, T., & Thagard, P. (2013). The affective meanings of automatic social behaviors: Three mechanisms that explain priming. Psychological Review, 120, 255–280.Google Scholar
  120. Schwartz, G. E., Weinberger, D. A., & Singer, J. A. (1981). cardiovascular differentiation of happiness, sadness, anger, and fear following imagery and exercise. Psychosomatic Medicine, 43, 343–364.Google Scholar
  121. Schwartz, J. E., Warren, K., & Pickering, T. G. (1994). Mood, location and physical position as predictors of ambulatory blood pressure and heart rate: Application of a multi-level random effects model. Annals of Behavioral Medicine, 16, 210–220.Google Scholar
  122. Simon, R. W., & Nath, L. E. (2004). Gender and emotion in the United States: Do men and women differ in self-reports of feelings and expressive behavior? American Journal of Sociology, 109, 1137–1176.Google Scholar
  123. Simon, R. W., Eder, D., & Evans, C. (1992). The development of feeling norms underlying romantic love among adolescent females. Social Psychology Quarterly, 55, 29–46.Google Scholar
  124. Sinaceur, M., & Tiedens, L. Z. (2006). Get mad and get more than even: When and why anger expression is effective in negotiations. Journal of Experimental Social Psychology, 42, 314–322.Google Scholar
  125. Skrandies, W. (1998). Evoked potential correlates of semantic meaning: A brain mapping study. Cognitive Brain Research, 6, 173–183.Google Scholar
  126. Smith, A. C., & Kleinman, S. (1989). Managing emotions in medical school: Students’ contacts with the living and the dead. Social Psychology Quarterly, 52, 56–69.Google Scholar
  127. Smith-Lovin, L. (1995). Sociology of affect and emotion. In K. S. Cook, G. A. Fine, & J. S. House (Eds.), Sociological perspectives on social psychology (pp. 118–148). Boston: Allyn & Bacon.Google Scholar
  128. Snyder, J. S., Soumier, A., Brewer, M., Pickel, J., & Cameron, H. A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behavior. Nature, 476, 458–461.Google Scholar
  129. Summers-Effler, E. (2002). The micro potential for social change: Emotion, consciousness, and social movement formation. Sociological Theory, 20, 41–60.Google Scholar
  130. Thagard, P., & Schröder, T. (2013). Emotions as semantic pointers: Constructive neural mechanisms. Manuscript submitted for publication.Google Scholar
  131. Thoits, P. A. (1989). The sociology of emotions. Annual Review of Sociology, 15, 317–342.Google Scholar
  132. Thoits, P. A. (1996). Managing the emotions of others. Symbolic Interaction, 19, 85–109.Google Scholar
  133. Thompson, R. R., Gupta, S., Miller, K., Mills, S., & Orr, S. (2004). the effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology, 29, 35–48.Google Scholar
  134. Tiedens, L. Z. (2001). Anger and advancement versus sadness and subjugation: The effect of negative emotion expressions on social status conferral. Journal of Personality and Social Psychology, 80, 86–94.Google Scholar
  135. van Honk, J., Tuiten, A., Verbaten, R., van den Hout, M., Koppeschaar, H., Thijssen, J., & de Haan, E. (1999). Correlations among salivary testosterone, mood, and selective attention to threat in humans. Hormones and Behavior, 36, 17–24.Google Scholar
  136. Vytal, K., & Hamann, S. (2010). Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. Journal of Cognitive Neuroscience, 22, 2864–2885.Google Scholar
  137. Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531.Google Scholar
  138. Walf, A. A., & Frye, C. A. (2006). A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 31, 1097–1111.Google Scholar
  139. Wingen, van, Guido, A., van Broekhoven, F., Verkes, R. J., Petersson, K. M., Bäckström, T., Buitelaar, J. K., & Fernández, G. (2008). Progesterone selectively increases amygdala reactivity in women. Molecular Psychiatry, 13, 325–333.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Mount Holyoke CollegeSouth HadleyUSA
  2. 2.University of GeorgiaAthensUSA

Personalised recommendations