Skip to main content

Synthetic Approaches to Intermetallic Clathrates

  • Chapter
  • First Online:
The Physics and Chemistry of Inorganic Clathrates

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 199))

Abstract

Intermetallic clathrates comprise a class of unique crystalline solids displaying remarkable flexibility in chemical composition, resulting in a wide range of physical properties. Developing the scientific understanding of the unusual and potentially useful properties of these materials and their development in device applications requires a diverse synthetic toolkit. A variety of techniques have been used to prepare intermetallic clathrates, including direct solid-state reaction of the elements, flux and Czochralski crystal growth methods, and thermal decomposition of Zintl phase precursors. Recently, new approaches have been developed and applied to synthesize high quality crystals, as well as the preparation of compositions that are not easily accessible by conventional techniques. In this chapter, we provide a concise overview of both conventional and novel methods for synthesis of intermetallic clathrates, highlighting the types of compositions and characteristic products that have been prepared by each approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Clathrate-I Cs8−x Si46 can be prepared by high-pressure techniques. The lattice parameter and average Si–Si bond length in this phase are the largest of any of the silicon clathrate-I framework [35].

  2. 2.

    Melt-spinning has been used in some cases to produce metastable compositions via rapid quenching from the melt [46, 47]. In most cases these compositions are slight deviations from stable compositions, likely due to the broadened phase width for the compound at higher temperature.

  3. 3.

    As an example, Na4Si4 melts congruently at 798 °C according to the reported Na–Si phase diagram [65].

  4. 4.

    Fully filled (stoichiometric) Na24Si136 is not readily prepared by thermal decomposition, but can be prepared using techniques discussed elsewhere in this chapter.

  5. 5.

    Here we are concerned with single crystals large enough for physical and transport properties characterization or neutron scattering experiments.

  6. 6.

    Intriguing double-helical microtubules were obtained by evaporation of Na from molten Na4Si4 at 800 °C [120].

  7. 7.

    We consider pressures in excess of 1 GPa to be “high”.

References

  1. J.S. Kasper, P. Hagenmuller, M. Pouchard, C. Cros, Science 150, 1713 (1965)

    Google Scholar 

  2. C. Cros, M. Pouchard, P. Hagenmuller, J. Solid State Chem. 2, 570 (1970)

    Google Scholar 

  3. C. Cros, Sur quelques nouveaux siliciures et gemaniures alcalins à structure clathrate: etude cristallochimique et physique, Doctoral Thesis, University of Bordeaux, Bordeaux, France, 1970

    Google Scholar 

  4. G.S. Nolas, G.A. Slack, S.B. Schujman, in Semiconductors and Semimetals, vol. 69, ed. by T.M. Tritt, (Academic Press, San Diego, 2001), p. 255

    Google Scholar 

  5. G.S. Nolas, in Thermoelectrics Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Press, Boca Raton, 2006), pp. 33–1

    Google Scholar 

  6. T. Takabatake, in Thermoelectric Nanomaterials, ed. by K. Koumoto, T. Mori (Springer, Berlin Heidelberg, 2013)

    Google Scholar 

  7. M. Beekman, G.S. Nolas, J. Mater. Chem. 18, 842 (2008)

    Google Scholar 

  8. A.D. Martinez, L. Krishna, L.L. Baranowski, M.T. Lusk, E.S. Toberer, A.C. Tamboli, IEEE J. Photovoltaics 3, 1305 (2013)

    Google Scholar 

  9. T. Langera, S. Dupkeb, H. Trillb, S. Passerinib, H. Eckert, R. Pöttgen, M. Winter, J. Electrochem. Soc. 159, A1318 (2012)

    Google Scholar 

  10. J. Yang, J.S. Tse, J. Mater. Chem. A 1, 7782 (2013)

    Google Scholar 

  11. D. Neiner, N.L. Okamoto, C.L. Condron, Q.M. Ramasse, P. Yu, N.D. Browning, S.M. Kauzlarich, J. Am. Chem. Soc. 129, 13857 (2007)

    Google Scholar 

  12. P. Rogl, in Thermoelectrics Handbook: Macro to Nano, ed.by D.M. Rowe (CRC Press, Boca Raton, 2006), pp. 32-1

    Google Scholar 

  13. A.V. Shevelkov, K. Kovnir, Struct. Bond. 139, 97 (2010)

    Google Scholar 

  14. M. Christensen, S. Johnsen, B.B. Iversen, Dalton Trans. 39, 978 (2010)

    Google Scholar 

  15. M. O’Keefe, G.B. Adams, O.F. Sankey, Phil. Mag. Lett. 78, 21 (1998)

    Google Scholar 

  16. F. Dubois, T.F. Fässler, J. Am. Chem. Soc. 127, 3264 (2005)

    Google Scholar 

  17. W. Carrillo-Cabrera, S. Budnyk, Y. Prots, Y. Grin, Z. Anorg, Allg. Chem. 630, 2267 (2004)

    Google Scholar 

  18. X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J.R. Salvador, W. Zhang, L. Chen, W. Wong-Ng, Adv. Func. Mater. 20, 755 (2010)

    Google Scholar 

  19. G.S. Nolas, J.L. Cohn, G.A. Slack, S.B. Schujman, Appl. Phys. Lett. 73, 178 (1998)

    Google Scholar 

  20. J. Martin, H. Wang, G.S. Nolas, Appl. Phys. Lett. 92, 222110 (2008)

    Google Scholar 

  21. A.F. May, E.S. Toberer, A. Saramat, G.J. Snyder, Phys. Rev. B 80, 125205 (2009)

    Google Scholar 

  22. G.S. Nolas, D.G. Vanderveer, A.P. Wilkinson, J.L. Cohn, J. Appl. Phys. 91, 8970 (2002)

    Google Scholar 

  23. M. Beekman, W. Schnelle, H. Borrmann, M. Baitinger, Yu. Grin, G.S. Nolas, Phys. Rev. Lett. 104, 018301 (2010)

    Google Scholar 

  24. S. Stefanoski, J. Martin, G.S. Nolas, J. Phys. Cond. Matter 22, 485404 (2010)

    Google Scholar 

  25. S. Stefanoski, C.D. Malliakas, M.G. Kanatzidis, G.S. Nolas, Inorg. Chem. 51, 8686 (2012)

    Google Scholar 

  26. Y. Liu, L.-M. Wu, L.-H. Li, S.-W. Du, J.D. Corbett, L. Chen, Angew. Chem. Int. Ed. 48, 5305 (2009)

    Google Scholar 

  27. H. He, A. Zevalkink, Z.M. Gibbs, G.J. Snyder, S. Bobev, Chem. Mater. 24, 3596 (2012)

    Google Scholar 

  28. R.D. Shannon, C.T. Prewitt, Acta Cryst. B 25, 925 (1969)

    Google Scholar 

  29. R.D. Shannon, C.T. Prewitt, Acta Cryst. B 26, 1046 (1970)

    Google Scholar 

  30. R.D. Shannon, Acta Cryst. A 32, 750 (1976)

    Google Scholar 

  31. L. Pauling, B. Kamb, Proc. Nat. Acad. Sci. USA 83, 3569 (1986)

    Google Scholar 

  32. S. Bobev, S.C. Sevov, J. Solid State Chem. 153, 92 (2000)

    Google Scholar 

  33. N. Melnychenko-Koblyuk, A. Grytsiv, L. Fornasari, H. Kaldarar, H. Michor, F. Röhrbacher, M. Koza, E. Royanian, E. Bauer, P. Rogl, M. Rotter, H. Schmid, F. Marabelli, A. Devishvili, M. Doerr, G. Giester, J. Phys.: Condens. Matter 19, 216223 (2007)

    Google Scholar 

  34. M. Falmbigl, F. Kneidinger, M. Chen, A. Grytsiv, H. Michor, E. Royanian, E. Bauer, H. Effenberger, R. Podloucky, P. Rogl, Inorg. Chem. 52, 931 (2013)

    Google Scholar 

  35. A. Wosylus, I. Veremchuk, W. Schnelle, M. Baitinger, U. Schwarz, Y. Grin, Chem. Eur. J. 15, 5901 (2009)

    Google Scholar 

  36. G.S. Nolas, T.J.R. Weakley, J.L. Cohn, R. Sharma, Phys. Rev. B 61, 3845 (2000)

    Google Scholar 

  37. C. Candolfi, U. Aydemir, M. Baitinger, N. Oeschler, F. Steglich, Yu. Grin, J. Appl. Phys. 111, 043706 (2012)

    Google Scholar 

  38. J. Martin, G.S. Nolas, H. Wang, J. Yang, J. Appl. Phys. 102, 103719 (2007)

    Google Scholar 

  39. H. Anno, H. Yamada, T. Nakabayashi, M. Hokazono, R. Shirataki, J. Phys: Conf. Ser. 379, 012007 (2012)

    Google Scholar 

  40. A. Kaltzoglou, S. Ponou, T.F. Fässler, Eur. J. Inorg. Chem. 2008, 4507 (2008)

    Google Scholar 

  41. S. Bobev, S.C. Sevov, J. Solid State Chem. 153, 92 (2000)

    Google Scholar 

  42. M. Beekman, W. Wong-Ng, J.A. Kaduk, A. Shapiro, G.S. Nolas, J. Solid State Chem. 180, 1076 (2007)

    Google Scholar 

  43. M. Beekman, J.A. Kaduk, J. Gryko, W. Wong-Ng, A. Shapiro, G.S. Nolas, J. Alloys Comp. 470, 365 (2009)

    Google Scholar 

  44. M.C. Schäfer, S. Bobev J. Am. Chem. Soc. 135, 1696 (2013)

    Google Scholar 

  45. M. Beekman, G.S. Nolas, Mater. Res. Soc. Proc. 1044, 1044-U05-05 (2007)

    Google Scholar 

  46. S. Laumann, M. Ikeda, H. Sassik, A. Prokofiev, S. Paschen, Z. anorg. allgem. Chem. 638, 294 (2012)

    Google Scholar 

  47. S. Laumann, M. Ikeda, H. Sassik, A. Prokofiev, S. Paschen, J. Mater. Res. 26, 1861 (2011)

    Google Scholar 

  48. R. Schäfer, W. Klemm, Z. Anorg, Allg. Chem. 312, 214 (1961)

    Google Scholar 

  49. J. Witte, H.G. von Schnering, Z. Anorg, Allg. Chem. 327, 260 (1964)

    Google Scholar 

  50. C. Cros, M. Pouchard, P. Hagenmuller, C.R. Acad, Sc. Paris 260, 4764 (1965)

    Google Scholar 

  51. C. Cros, M. Pouchard, P. Hagenmuller, Bull. Soc. Chim. France, 379 (1971)

    Google Scholar 

  52. C. Cros, M. Pouchard, P. Hagenmuller, J.S. Kasper, Bull. Soc. Chim. France, 2737 (1968)

    Google Scholar 

  53. G.K. Ramachandran, J.J. Dong, J. Diefenbacher, J. Gryko, R.F. Marzke, O.F. Sankey, P.F. McMillan, J. Solid State Chem. 145, 716 (1999)

    Google Scholar 

  54. G.K. Ramachandran, P.F. McMillan, J. Dong, O.F. Sankey, J. Solid State Chem. 154, 626 (2000)

    Google Scholar 

  55. J. Gryko, P.F. McMillan, R.F. Marzke, G.K. Ramachandran, D. Patton, S.K. Deb, O.F. Sankey, Phys. Rev. B 62, R7707 (2000)

    Google Scholar 

  56. G.K. Ramachandran, J. Dong, O.F. Sankey, P.F. McMillan, Phys. Rev. B 63, 033102 (2000)

    Google Scholar 

  57. S. Latturner, B.B. Iversen, J. Sepa, V. Srdanov, G. Stucky, Phys. Rev. B 63, 125403 (2001)

    Google Scholar 

  58. M. Beekman, G.S. Nolas, Phys. B 383, 111 (2006)

    Google Scholar 

  59. M. Beekman, G.S. Nolas, Int. J. Appl. Ceram. Technol. 4, 332 (2007)

    Google Scholar 

  60. M. Baitinger, H.G. von Schnering, J.-H. Chang, K. Peters, Yu. Grin, Z. Krist, NCS 222, 87 (2007)

    Google Scholar 

  61. M. Beekman, C.P. Sebastian, Yu. Grin, G.S. Nolas, J. Electron. Mater. 38, 1052 (2009)

    Google Scholar 

  62. M. Beekman, E.N. Nenghabi, K. Biswas, C.W. Myles, M. Baitinger, Yu. Grin, G.S. Nolas, Inorg. Chem. 49, 5338 (2010)

    Google Scholar 

  63. A.D. Ritchie, M.A. MacDonald, P. Zhang, M.A. White, M. Beekman, J. Gryko, G.S. Nolas, Phys. Rev. B 82, 155207 (2010)

    Google Scholar 

  64. A.D. Ritchie, M.B. Johnson, J.F. Niven, M. Beekman, G.S. Nolas, J. Gryko, M.A. White, J. Phys.: Condens. Matter 25, 435401 (2013)

    Google Scholar 

  65. H. Morito, T. Yamada, T. Ikeda, H. Yamane, J. Alloys Comp. 480, 723 (2009)

    Google Scholar 

  66. M. Beekman, MSc Thesis, University of South Florida, 2006

    Google Scholar 

  67. M. Beekman, PhD Dissertation, University of South Florida, 2009

    Google Scholar 

  68. H.-O. Horie, T. Kikudome, K. Teramura, S. Yamanaka, J. Solid State Chem. 182, 129 (2009)

    Google Scholar 

  69. J. Gryko, U.S. Patent No. 6,423,286

    Google Scholar 

  70. P.T. Hutchins, O. Leynaud, L.A. O’Dell, M.E. Smith, P. Barnes, P.F. McMillan, Chem. Mater. 23, 5160 (2011)

    Google Scholar 

  71. M. Beekman, G.S. Nolas, unpublished results

    Google Scholar 

  72. L. Nistor, G. van Tendeloo, S. Amelinckx, C. Cros, Phys. Status Solidi A 146, 119 (1994)

    Google Scholar 

  73. J. He, D.D. Klug, K. Uehara, K.F. Preston, C.I. Ratcliffe, J.S. Tse, J. Phys. Chem. 105, 3475 (2001)

    Google Scholar 

  74. E. Reny, P. Gravereau, C. Cros, M. Pouchard, J. Mater. Chem. 8, 2839 (1998)

    Google Scholar 

  75. A. Ammar, C. Cros, M. Pouchard, N. Jaussaud, J.-M. Bassat, G. Villeneuve, M. Duttine, M. Ménétrier, E. Reny, Sol. State Sci. 6, 393 (2004)

    Google Scholar 

  76. J. Gryko, R.F. Marzke, G.A. Lamberton Jr, T.M. Tritt, M. Beekman, G.S. Nolas, Phys. Rev. B 71, 115208 (2005)

    Google Scholar 

  77. H. Kawaji, H-O. Horie, S. Yamanaka, and M. Ishikawa. Phys. Rev. Lett. 74, 1427 (1995)

    Google Scholar 

  78. T. Rachi, K. Tanigaki, R. Kumashiro, J. Winter, H. Kuzmany, Chem. Phys. Lett. 409, 48 (2005)

    Google Scholar 

  79. M. Beekman, J.A. Kaduk, Q. Huang, W. Wong-Ng, W. Yang, D. Wang, G.S. Nolas, Chem. Commun. 2007, 837 (2007)

    Google Scholar 

  80. M. Beekman, S. Stefanoski, W. Wong-Ng, J.A. Kaduk, Q. Huang, C. Reege, C.R. Bowers, G.S. Nolas, J. Solid State Chem. 183, 1272 (2010)

    Google Scholar 

  81. L.L. Baranowski, L. Krishna, A.D. Martinez, T. Raharjo, V. Stevanovic, A.C. Tamboli, E.S. Toberer, J. Mater. Chem. C 2, 3231 (2014)

    Google Scholar 

  82. H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza, L. Häming, J. Solid State Chem. 151, 117 (2000)

    Google Scholar 

  83. A.M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, Nature 443, 320 (2006)

    Google Scholar 

  84. B. Böhme, A. Guloy, Z. Tang, W. Schnelle, U. Burkhardt, M. Baitinger, Y. Grin, J. Am. Chem. Soc. 129, 5348 (2007)

    Google Scholar 

  85. B. Böhme, S. Hoffmann, M. Baitinger, Y. Grin, Z. Naturforsch. 66b, 230 (2011)

    Google Scholar 

  86. Y. Liang, B. Böhme, M. Reibold, W. Schnelle, U. Schwarz, M. Baitinger, H. Lichte, Y. Grin, Inorg. Chem. 50, 4523 (2011)

    Google Scholar 

  87. A.M. Guloy, Z. Tang, R. Ramlau, B. Böhme, M. Baitinger, Y. Grin, Eur. J. Inorg. Chem. 2009, 2455 (2009)

    Google Scholar 

  88. B. Böhme, Dissertation (Dr. rer. nat.), Technischen Universität Dresden, 2010

    Google Scholar 

  89. M.C. Blosser, G.S. Nolas, Mater. Lett. 99, 161 (2013)

    Google Scholar 

  90. B. Böhme, U. Aydemir, A. Ormeci, W. Schnelle, M. Baitinger, Y. Grin, Sci. Tech. Adv. Mater. 8, 410 (2007)

    Google Scholar 

  91. S. Yamanaka, E. Enishi, H. Fukuoka, M. Yasukawa, Inorg. Chem. 39, 56 (2000)

    Google Scholar 

  92. B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson, D. Mandrus, Phys. Rev. B 63, 245113 (2001)

    Google Scholar 

  93. M.G. Kanatzidis, R. Pöttgen, W. Jeitschko, Angew. Chem. Int. Ed. 44, 6996 (2005)

    Google Scholar 

  94. P.C. Canfield, Z. Fisk, Phil. Mag. B 65, 1117 (1992)

    Google Scholar 

  95. K. Billquist, D. Bryan, M. Christensen, C. Gatti, L. Holmgren, B.B. Iversen, E. Mueller, M. Muhammed, G. Noriega, A.E.C. Palmqvist, D. Platzek, D.M. Rowe, A. Saramat, C. Stiewe, G.D. Stucky, G. Svensson, M. Toprak, S.G.K. Williams, Y. Zhang, in Proceedings of 22nd International Conference on Thermoelectrics, (IEEE, New York, 2003), pp. 127–130

    Google Scholar 

  96. A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, G.D. Stucky, J. Appl. Phys. 99, 023708 (2006)

    Google Scholar 

  97. N. Mugita, Y. Nakakohara, R. Teranishi, S. Munetoh, J. Mater. Res. 26, 1857 (2011)

    Google Scholar 

  98. M. Christensen, S. Johnsen, M. Søndergaard, J. Overgaard, H. Birkedal, B.B. Iversen, Chem. Mater. 21, 122 (2009)

    Google Scholar 

  99. L.T.K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann, U. Burkhardt, J. Custers, A. Haghighirad, R. Hofler, K.D. Luther, F. Ritter, W. Assmus, Yu. Grin, S. Paschen, Dalton Trans. 39, 1071 (2010)

    Google Scholar 

  100. H. Euchner, S. Pailhès, L.T.K. Nguyen, W. Assmus, F. Ritter, A. Haghighirad, Y. Grin, S. Paschen, M. de Boissieu, Phys. Rev. B 86, 224303 (2012)

    Google Scholar 

  101. A. Bentien, A.E.C. Palmqvist, J.D. Bryan, S. Latturner, G.D. Stucky, L. Furenlid, B.B. Inversen, Angew. Chem. Int. Ed. 39, 3613 (2000)

    Google Scholar 

  102. C.L. Condron, J. Martin, G.S. Nolas, P.M.B. Piccoli, A.J. Schultz, S.M. Kauzlarich, Inorg. Chem. 45, 9381 (2006)

    Google Scholar 

  103. C.L. Condron, R. Porter, T. Guo, S.M. Kauzlarich, Inorg. Chem. 44, 9185 (2005)

    Google Scholar 

  104. K. Suekuni, M.A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa, T. Takabatake, Phys. Rev. B 77, 235119 (2008)

    Google Scholar 

  105. K. Suekuni, M.A. Avila, K. Umeo, T. Takabatake, Phys. Rev. B 75, 195210 (2007)

    Google Scholar 

  106. V. Baran, A. Fischer, W. Scherer, T.F. Fässler, Z. Anorg, Allg. Chem. 639, 2125 (2013)

    Google Scholar 

  107. T. Tanaka, T. Onimaru, K. Suekuni, S. Mano, H. Fukuoka, S. Yamanaka, T. Takabatake, Phys. Rev. B 81, 165110 (2010)

    Google Scholar 

  108. S. Stefanoski, Y. Dong, G.S. Nolas, J. Solid State Chem. 204, 166 (2013)

    Google Scholar 

  109. M. Beekman, M. Baitinger, H. Borrmann, W. Schnelle, K. Meier, G.S. Nolas, Yu. Grin, J. Am. Chem. Soc. 131, 9642 (2009)

    Google Scholar 

  110. S. Stefanoski, M.C. Blosser, G.S. Nolas, Cryst. Growth Des. 13, 195 (2013)

    Google Scholar 

  111. S. Stefanoski, M. Beekman, W. Wong-Ng, P. Zavalij, G.S. Nolas, Chem. Mater. 23, 1491 (2011)

    Google Scholar 

  112. S. Stefanoski, G.S. Nolas, Cryst. Growth Des. 11, 4533 (2011)

    Google Scholar 

  113. R.T. Macaluso, B.K. Greve, Dalton Trans. 41, 14225 (2012)

    Google Scholar 

  114. A. Borshchevsky, in CRC Handbook on Thermoelectrics, ed. by D.M. Rowe (CRC Press, Boca Raton, 1995), p. 83

    Google Scholar 

  115. E.S. Toberer, M. Christensen, B.B. Iversen, G.J. Snyder, Phys. Rev. B 77, 075203 (2008)

    Google Scholar 

  116. M.J. Tokita, Soc. Powder Tech. Jpn. 790, 30 (1993)

    Google Scholar 

  117. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41, 763 (2006)

    Google Scholar 

  118. M. Omori, Mater. Sci. Eng., A 287, 183 (2000)

    Google Scholar 

  119. I. Veremchuk, M. Beekman, I. Antonyshyn, M. Baitinger, G.S. Nolas, Y. Grin, in preparation

    Google Scholar 

  120. H. Morito, H. Yamane, Angew. Chem. Int. Ed. 49, 3638 (2010)

    Google Scholar 

  121. M. Beekman, G.S. Nolas, U.S. Patent No. 8,414,858

    Google Scholar 

  122. A. San-Miguel, P. Kéghélian, X. Blase, P. Mélinon, A. Perez, J.P. Itié, A. Polian, E. Reny, C. Cros, M. Pouchard, Phys. Rev. Lett. 83, 5290 (1999)

    Google Scholar 

  123. J.F. Meng, N.V. Chandra Shekar, J.V. Badding, G.S. Nolas, J. Appl. Phys. 89, 1730 (2001)

    Google Scholar 

  124. U. Schwarz, A. Wosylus, B. Böhme, M. Baitinger, M. Hanfland, Yu. Grin, Angew. Chem. Int. Ed. 47, 6790 (2008)

    Google Scholar 

  125. S. Yamanaka, E. Enishi, H. Fukuoka, M. Yasukawa, Inorg. Chem. 39, 56 (2000)

    Google Scholar 

  126. H. Kawaji, H.-O. Horie, S. Yamanaka, M. Ishikawa, Phys. Rev. Lett. 74, 1427 (1995)

    Google Scholar 

  127. O.O. Kurakevych, T.A. Strobel, D.Y. Kim, T. Muramatsu, V.V. Struzhkin, Cryst. Growth Des. 13, 303 (2013)

    Google Scholar 

  128. H. Fukuoka, K. Ueno, S. Yamanaka, J. Organomet. Chem. 611, 543 (2000)

    Google Scholar 

  129. P. Toulemonde, A. San Miguel, A. Merlen, R. Viennois, S. Le Floch, Ch. Adessi, X. Blase, J.L. Tholence, J. Phys. Chem. Solids 67, 1117 (2006)

    Google Scholar 

  130. N. Jaussaud, P. Toulemonde, M. Pouchard, A. San Miguel, P. Gravereau, S. Pechev, G. Goglio, and C. Cros, Sol. State Sci. 6, 401 (2004)

    Google Scholar 

  131. S. Witanachchi, R. Hyde, M. Beekman, D. Mukherjee, P. Mukherjee, and G.S. Nolas, in Proceedings of 25th International Conference on Thermoelectrics, p. 44, 2006

    Google Scholar 

  132. S. Witanachchi, R. Hyde, H.S. Nagaraja, M. Beekman, G.S. Nolas, P. Mukherjee, Mater. Res. Soc. Symp. Proc. 886, 401 (2006)

    Google Scholar 

  133. L. Miao, S. Tanemura, T. Watanabe, M. Tanemura, S. Toh, K. Kaneko, Y. Sugahara, T. Hirayama, Appl. Surf. Sci. 254, 167 (2007)

    Google Scholar 

  134. P. Ecklund, S. Fang, L. Grigorian, U.S. Patent No. US6103403 A

    Google Scholar 

  135. T. Kume, Y. Iwai, T. Sugiyama, F. Ohashi, T. Ban, S. Sasaki, S. Nonomura, Phys. Stat. Sol. C 10, 1739 (2013)

    Google Scholar 

  136. M. Gong, X.W. Zhu, T.Z. Xu, L.Z. Li, W.Z. Jiang, X. Zhou, Adv. Mater. Res. 487, 111 (2012)

    Google Scholar 

  137. R. Shirataki, M. Hokazono, T. Nakabayashi, H. Anno, IOP Conf. Ser.: Mater. Sci. Eng. 18, 142012 (2011)

    Google Scholar 

  138. A. Prokofiev, M. Ikeda, E. Makalkina, R. Svagera, M. Waas, S. Paschen, J. Elecron. Mater. 42, 1628 (2013)

    Google Scholar 

  139. P. Simon, Z. Tang, W. Carrillo-Cabrera, K. Chiong, B. Böhme, M. Baitinger, H. Lichte, Y. Grin, A.M. Guloy, J. Am. Chem. Soc. 133, 7596 (2011)

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support of the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under Award No. DE-FG02-04ER46145 at the University of South Florida.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matt Beekman or George S. Nolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beekman, M., Nolas, G.S. (2014). Synthetic Approaches to Intermetallic Clathrates. In: Nolas, G. (eds) The Physics and Chemistry of Inorganic Clathrates. Springer Series in Materials Science, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9127-4_3

Download citation

Publish with us

Policies and ethics