Adaptations of Prokaryotes to Their Biotopes and to Physicochemical Conditions in Natural or Anthropized Environments

Chapter

Abstract

Microorganisms to Physicochemical Conditions…?> live in a constantly changing environment and must modify their physiology and morphology to cope with these changes. The main systems for molecular adaptation to modifications of environmental conditions and the behavioral responses of prokaryotes in various habitats, excluding extreme habitats, are discussed. The main regulation systems that are described are transcription, signal transduction, and protein modifications. Three specialized systems are also presented in details: quorum sensing, phase variation, and antibiosis. Quorum sensing allows bacteria to trigger some responses when their density is high enough to permit the function to be successful. Phase variation is an adaptive process by which a bacterial subpopulation undergoes frequent, usually reversible phenotypic changes resulting from genetic or epigenetic alterations, allowing rapid modification of the cells physiology. Antibiosis is the ability to synthesize molecules that will impact other taxa and eventually provide a selective advantage to which some microbes respond by resisting to these molecules.

Finally are described the physiological responses to various environmental parameters such as temperature, oxidants, salinity, acidity, pressure, desiccation, and how this translates in different biotopes such as soil, water bodies, sediments, biofilms, mats, air, and manmade biotopes.

Keywords

Adaptation Adaptability Antibiosis Fitness Glycosylation Homeostasis Metabolism Morphology Physiology Protein modification Quorum sensing Phase variation Signal transduction Transcription 

References

  1. Abu-Qarn M, Eichler J, Sharon N (2008) Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr Opin Struct Biol 18:544–550PubMedGoogle Scholar
  2. Altuvia S (2007) Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 10:257–261PubMedGoogle Scholar
  3. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6PubMedGoogle Scholar
  4. Anderson JAH, Hooper MJ, Zak JC, Cox SB (2009) Molecular and functional assessment of bacterial community convergence in metal-amended soils. Microb Ecol 58:10–22PubMedGoogle Scholar
  5. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237PubMedGoogle Scholar
  6. Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P (1992) N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004PubMedCentralPubMedGoogle Scholar
  7. Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52PubMedGoogle Scholar
  8. Barrat JA, Gillet P, Lecuyer C, Sheppard HM, Lesourd M (1998) Formation of carbonates in the meteorite Tatahouine. Science 280:412–414PubMedGoogle Scholar
  9. Bentley SD et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedGoogle Scholar
  10. Benzerara K, Menguy N, Guyot F, Dominici C, Gillet P (2003) Nanobacteria-like calcite single crystals at the surfaces of the meteorite Tataouine. Proc Natl Acad Sci U S A 100:7438–7442PubMedCentralPubMedGoogle Scholar
  11. Benzerara K, Menguy N, Guyot F, Skouri F, De Luca G, Barakat M, Heulin T (2004) Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth Planet Sci Lett 228:439–449Google Scholar
  12. Benzerara K et al (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci U S A 103:9440–9445PubMedCentralPubMedGoogle Scholar
  13. Beyhan S, Tischler AD, Camilli A, Yildiz FH (2006) Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol 188:3600–3613PubMedCentralPubMedGoogle Scholar
  14. Bjarnsholt T, Givskov M (2007) Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 362:1213–1222PubMedCentralPubMedGoogle Scholar
  15. Bolwell GP (1996) The origin of the oxidative burst in plants. Biochem Soc Trans 24:438–442PubMedGoogle Scholar
  16. Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5:321–332PubMedGoogle Scholar
  17. Brock T (1997) The value of basic research: discovery of Thermus aquaticus and other extreme thermophiles. Genetics 146:1207–1210PubMedCentralPubMedGoogle Scholar
  18. Brumbley SM, Carney BF, Denny TP (1993) Phenotype conversion in Pseudomonas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. J Bacteriol 175:5477–5487PubMedCentralPubMedGoogle Scholar
  19. Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367PubMedGoogle Scholar
  20. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100(Suppl 2):14555–14561PubMedCentralPubMedGoogle Scholar
  21. Chanal A et al (2006) The desert of Tataouine: an extreme environment hosts a wide diversity that of microorganisms and bacteria radiotolerant. About Microbiol 8:514–525Google Scholar
  22. Christen B (2007) Principles of C-di-GMP signaling. PhD thesis, Faculty of Sciences, University of Basel, BaselGoogle Scholar
  23. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 98:2752–2757PubMedCentralPubMedGoogle Scholar
  24. Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H, Igarashi J, Suga H, Moon JS, Hwang I, Rhee S (2011) Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc Natl Acad Sci U S A 108:12089–12094PubMedCentralPubMedGoogle Scholar
  25. Cirou A, Mondy S, An S, Charrier A, Sarrazin A, Thoison O, DuBow M, Faure D (2011) Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl Environ Microbiol 78:481–492PubMedGoogle Scholar
  26. Cirz RT, Chin JK, Andes DR, de Crecy-Lagard V, Craig WA, Romesberg FE (2005) Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 3:e176PubMedCentralPubMedGoogle Scholar
  27. Condemine G, Ghazi A (2007) Differential regulation of two oligogalacturonate outer membrane channels, KdgN and KdgM, of Dickeya dadantii (Erwinia chrysanthemi). J Bacteriol 189:5955–5962PubMedCentralPubMedGoogle Scholar
  28. Cox MM (1998) A broadening view of recombinational DNA repair in bacteria. Genes Cells 3:65–78PubMedGoogle Scholar
  29. Cui L, Neoh HM, Iwamoto A, Hiramatsu K (2012) Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria. Proc Natl Acad Sci U S A 109:E1647–E1656PubMedCentralPubMedGoogle Scholar
  30. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377PubMedGoogle Scholar
  31. Dantas G, Sommer MO, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320:100–103PubMedGoogle Scholar
  32. Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91PubMedGoogle Scholar
  33. de Groot A, Chapon V, Servant P, Christen R, Saux F, Sommer S, Heulin T (2005) Deinococcus deserti sp. November, a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55:2441–2446PubMedGoogle Scholar
  34. de Groot A et al (2009) Genomics and proteomics of Alliance to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet DOI: 10. 1371/Google Scholar
  35. De Koning-Ward TF, Robins-Browne RM (1995) Contribution of urease to acid tolerance in Yersinia enterocolitica. Infect Immun 63:3790–3795PubMedCentralPubMedGoogle Scholar
  36. De Luca G, Barakat M, Ortet P, Jourlin-Castelli C, Ansaldi M, Py B, Fichant G, Coutinho PM, Voulhoux R, Bastien O, Maréchal E, Henrissat B, Quentin Y, Noirot P, Filloux A, Méjean V, DuBow M, Barras F, Barbe V, Weissenbach J, Mihalcescu I, Verméglio A, Achouak W, Heulin T (2011) The cyst-dividing bacterium Ramlibacter tataouinensis genome reveals a well-stocked toolbox for adaptation to a desert environment. PLoS One 6(9):e23784PubMedCentralPubMedGoogle Scholar
  37. Degrassi G, Aguilar C, Bosco M, Zahariev S, Pongor S, Venturi V (2002) Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Curr Microbiol 45:250–254PubMedGoogle Scholar
  38. DiMango E, Zar HJ, Bryan R, Prince A (1995) Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest 96:2204–2210PubMedCentralPubMedGoogle Scholar
  39. Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109PubMedGoogle Scholar
  40. Dong YH, Zhang XF, Soo HM, Greenberg EP, Zhang LH (2005) The two-component response regulator PprB modulates quorum-sensing signal production and global gene expression in Pseudomonas aeruginosa. Mol Microbiol 56:1287–1301PubMedGoogle Scholar
  41. Drlica K, Malik M (2003) Fluoroquinolones: action and resistance. Curr Top Med Chem 3:249–282PubMedGoogle Scholar
  42. Duncan L, Losick R (1993) SpoIIAB is an anti-sigma factor that binds to and inhibits transcription by regulatory protein sigma F from Bacillus subtilis. Proc Natl Acad Sci U S A 90:2325–2329PubMedCentralPubMedGoogle Scholar
  43. Dworkin J, Blaser MJ (1997) Nested DNA inversion as a paradigm of programmed gene rearrangement. Proc Natl Acad Sci U S A 94:985–990PubMedCentralPubMedGoogle Scholar
  44. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449PubMedGoogle Scholar
  45. Fetherston JD, Schuetze P, Perry RD (1992) Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol 6:2693–2704PubMedGoogle Scholar
  46. Fredrickson JK et al (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403PubMedGoogle Scholar
  47. Freitag CS, Abraham JM, Clements JR, Eisenstein BI (1985) Genetic analysis of the phase variation control of expression of type 1 fimbriae in Escherichia coli. J Bacteriol 162:668–675PubMedCentralPubMedGoogle Scholar
  48. Funa N, Ohnishi Y, Fujii I, Shibuya M, Ebizuka Y, Horinouchi S (1999) A new pathway for polyketide synthesis in microorganisms. Nature 400:897–899PubMedGoogle Scholar
  49. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density – responsive transcriptional regulators. J Bacteriol 176:269–275PubMedCentralPubMedGoogle Scholar
  50. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acylhomoserine lactone quorum sensing. Annu Rev Genet 35:439–468PubMedGoogle Scholar
  51. Galinski EA, Trüper HG (1982) Betaine, a compatible solute in the extremely halophilic phototrophic bacterium, Ectothiorhodospira halochloris. FEMS Microbiol Lett 13:357–361Google Scholar
  52. Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35PubMedCentralPubMedGoogle Scholar
  53. Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182PubMedCentralPubMedGoogle Scholar
  54. Galperin MY, Gomelsky M (2005) Bacterial signal transduction modules: from genomics to biology. ASM News 71:326–333Google Scholar
  55. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390PubMedGoogle Scholar
  56. Gao M, Mack TR, Stock AM (2007) Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32:225–234PubMedCentralPubMedGoogle Scholar
  57. Garcia-Pichel F, Lopez-Cortes A, Nubel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910PubMedCentralPubMedGoogle Scholar
  58. Gerdes K, Nielsen A, Thorsted P, Wagner EG (1992) Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage Ensures rapid turnover of the stable, hok, RSNB effector messenger RNAs and NADP. J Mol Biol 226:637–649PubMedGoogle Scholar
  59. Giovannoni SJ, Sting V (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343–348PubMedGoogle Scholar
  60. Gommeaux M, Barakat M, Lesourd M, Thiery J, Heulin T (2005) A morphological transition in the pleomorphic bacterium Ramlibacter tataouinensis TTB310. Res Microbiol 156:1026–1030PubMedGoogle Scholar
  61. Götz C et al (2007) Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457PubMedGoogle Scholar
  62. Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290PubMedGoogle Scholar
  63. Grogan DW (2004) Stability and repair of DNA in hyperthermophilic Archaea. Curr Issues Mol Biol 6:137–144PubMedGoogle Scholar
  64. Halladay JT, Ng WL, DasSarma S (1992) Genetic transformation of a halophilic archaebacterium with a gas vesicle gene cluster restores its ability to float. Gene 119:131–136PubMedGoogle Scholar
  65. Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939–946PubMedGoogle Scholar
  66. Han B, Pain A, Johnstone K (1997) Spontaneous duplication of a 661 bp element within a two-component sensor regulator gene causes phenotypic switching in colonies of Pseudomonas tolaasii, cause of brown blotch disease of mushrooms. Mol Microbiol 25:211–218PubMedGoogle Scholar
  67. Hayes F (2003) Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301:1496–1499PubMedGoogle Scholar
  68. Healy VL, Lessard IA, Roper DI, Knox JR, Walsh CT (2000) Vancomycin resistance in enterococci: reprogramming of the D-ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. Chem Biol 7:R109–R119PubMedGoogle Scholar
  69. Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239PubMedGoogle Scholar
  70. Hermans MA, Neuss B, Sahm H (1991) Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. J Bacteriol 173:5592–5595PubMedCentralPubMedGoogle Scholar
  71. Hernday AD, Braaten BA, Low DA (2003) The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol Cell 12:947–957PubMedGoogle Scholar
  72. Heulin T, Barakat M, Christen R, Lesourd M, Sutra L, De Luca G, Achouak W (2003) Ramlibacter tataouinensis gen. November, sp. November, and Ramlibacter henchirensis sp. November, cyst-producing bacteria isolated from soil in Tunisia subdesert. Int J Syst Evol Microbiol 53:589–594PubMedGoogle Scholar
  73. Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102:14422–14427PubMedCentralPubMedGoogle Scholar
  74. Hopwood DA, Sherman DH (1990) Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66PubMedGoogle Scholar
  75. Howell-Adams B, Seifert HS (2000) Molecular models accounting for the gene conversion reactions mediating gonococcal pilin antigenic variation. Mol Microbiol 37:1146–1158PubMedGoogle Scholar
  76. Hüttenhofer A, Vogel J (2006) Experimental approaches to identify non-coding RNAs. Nucleic Acids Res 34:635–646PubMedCentralPubMedGoogle Scholar
  77. Imhoff J (1988) Halophilic phototrophic bacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 85–108Google Scholar
  78. Inouye M (2006) Signaling by transmembrane proteins shifts gears. Cell 126:829–831PubMedGoogle Scholar
  79. Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Camara M (2002) Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 298:1207PubMedGoogle Scholar
  80. Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471PubMedGoogle Scholar
  81. Kaci Y, Heyraud A, Barakat M, Heulin T (2005) Isolation and identification of EPS-producing Rhizobium year strain from arid soil (Algeria): characterization of EPS icts and the effect of inoculation on wheat rhizosphere soil structure. Res Microbiol 156:522–531PubMedGoogle Scholar
  82. Karner MB, Delong EF, Karl DM (2001) Archeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510PubMedGoogle Scholar
  83. Kazmierczak BI, Lebron MB, Murray TS (2006) Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 60:1026–1043PubMedCentralPubMedGoogle Scholar
  84. Kentner D, Sourjik V (2006) Spatial organization of the bacterial chemotaxis system. Curr Opin Microbiol 9:619–624PubMedGoogle Scholar
  85. Keshavan ND, Chowdhary PK, Haines DC, Gonzalez JE (2005) L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:8427–8436PubMedCentralPubMedGoogle Scholar
  86. Khajanchi BK, Kirtley ML, Brackman SM, Chopra AK (2011) Immunomodulatory and protective roles of quorum-sensing signaling molecules N-acyl homoserine lactones during infection of mice with Aeromonas hydrophila. Infect Immun 79:2646–2657PubMedCentralPubMedGoogle Scholar
  87. Khan S (1992) Motility. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, New York, pp 193–202Google Scholar
  88. Kharel MK, Subba B, Basnet DB, Woo JS, Lee HC, Liou K, Sohng JK (2004) A gene cluster for biosynthesis of kanamycin from Streptomyces kanamyceticus: comparison with gentamicin biosynthetic gene cluster. Arch Biochem Biophys 429:204–214PubMedGoogle Scholar
  89. Khorchid A, Ikura M (2006) Bacterial histidine kinase as signal sensor and transducer. Int J Biochem Cell Biol 38:307–312PubMedGoogle Scholar
  90. Kiem S et al (2004) Phase variation of biofilm formation in Staphylococcus aureus by IS 256 insertion and its impact on the capacity adhering to polyurethane surface. J Korean Med Sci 19:779–782PubMedCentralPubMedGoogle Scholar
  91. Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD (2004) HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54:75–88PubMedGoogle Scholar
  92. Klemm P (1986) Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5:1389–1393PubMedCentralPubMedGoogle Scholar
  93. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810PubMedGoogle Scholar
  94. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318:652–655PubMedGoogle Scholar
  95. Konopka AE, Lara JC, Staley JT (1977) Isolation and characterization of gas vesicles from Microcyclus aquaticus. Arch Microbiol 112:133–140PubMedGoogle Scholar
  96. Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A 101:3160–3165PubMedCentralPubMedGoogle Scholar
  97. Krasteva PV, Giglio KM, Sondermann H (2012) Sensing the messenger: The diverse ways that bacteria signal trough c-diGMP. Protein Sci 21:929–948PubMedCentralPubMedGoogle Scholar
  98. Krupa A, Srinivasan N (2005) Diversity in domain architectures of Ser/Thr kinases and their homologues in prokaryotes. BMC Genomics 6:129PubMedCentralPubMedGoogle Scholar
  99. Kulasakara H et al (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103:2839–2844PubMedGoogle Scholar
  100. Lacroix A (1931) On the recent fall (June 27, 1931) of a meteorite asiderite in the extreme south of Tunisia. C R Acad Sci Paris 193:305–309Google Scholar
  101. Lapouge K, Schubert M, Allain FH, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253PubMedGoogle Scholar
  102. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146PubMedGoogle Scholar
  103. Laue BE et al (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480PubMedGoogle Scholar
  104. Le Rudulier D, Bouillard L (1983) Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl Environ Microbiol 46:152–159PubMedCentralPubMedGoogle Scholar
  105. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926PubMedCentralPubMedGoogle Scholar
  106. Lee SY, Bailey SC, Apirion D (1978) Small stable RNAs from Escherichia coli: evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J Bacteriol 133:1015–1023PubMedCentralPubMedGoogle Scholar
  107. Leigh JA, Dodsworth JA (2007) Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349–377PubMedGoogle Scholar
  108. Lewin B (1981) Gene expression. Wiley, New YorkGoogle Scholar
  109. Lieph R, Veloso FA, Holmes DS (2006) Thermophiles like hot T. Trends Microbiol 14:423–426PubMedGoogle Scholar
  110. Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dyé F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81–97PubMedGoogle Scholar
  111. Liu W, Christenson SD, Standage S, Shen B (2002) Biosynthesis of the enediyne antitumor antibiotic C-1027. Science 297:1170–1173PubMedGoogle Scholar
  112. Long PF et al (2002) Engineering specificity of starter unit selection by the erythromycin-producing polyketide synthase. Mol Microbiol 43:1215–1225PubMedGoogle Scholar
  113. Lorenz C, von Pelchrzim F, Schroeder R (2006) Evolution of Genomic systematic ligands by exponential enrichment (Genomic SELEX) for the identification of protein-binding RNAs independent of Their Expression Levels. Nat Protoc 1:2204–2212PubMedGoogle Scholar
  114. Lory S, Wolfgang M, Lee V, Smith R (2004) The multi-talented bacterial adenylate cyclases. Int J Med Microbiol 293:479–482PubMedGoogle Scholar
  115. Luneberg E et al (2001) Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila. Mol Microbiol 39:1259–1271PubMedGoogle Scholar
  116. Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403PubMedGoogle Scholar
  117. Ma HW, Kumar B, Ditges U, Gunzer F, Buer J, Zeng AP (2004) An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32:6643–6649PubMedCentralPubMedGoogle Scholar
  118. Madigan M, Martinko JM, Stahl D, Clark DP (2010) Brock: biology of microorganisms, 13th edn. Pearson Benjamin-Cummings, San FranciscoGoogle Scholar
  119. Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127PubMedGoogle Scholar
  120. Manickam N, Reddy MK, Saini HS, Shanker R (2008) Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in gamma-HCH degradation. J Appl Microbiol 104:952–960PubMedGoogle Scholar
  121. Martinez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489PubMedGoogle Scholar
  122. Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938PubMedCentralPubMedGoogle Scholar
  123. Massé E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99:4620–4625PubMedCentralPubMedGoogle Scholar
  124. Mathesius U (2003) Conservation and divergence of signalling pathways between roots and soil microbes – the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. Plant Soil 255:105–119Google Scholar
  125. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano- Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorumsensing signals. Proc Natl Acad Sci U S A 100:1444–1449PubMedCentralPubMedGoogle Scholar
  126. Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314PubMedGoogle Scholar
  127. McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55:49–75PubMedGoogle Scholar
  128. McKenney D, Brown KE, Allison DG (1995) Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication. J Bacteriol 177:6989–6992PubMedCentralPubMedGoogle Scholar
  129. Miller AA (1961) Climatology. Methuen, LondonGoogle Scholar
  130. Mills JA, Venkatesan MM, Baron LS, Buysse JM (1992) Spontaneous insertion of an IS1-like element into the virF gene is responsible for avirulence in opaque colonial variants of Shigella flexneri 2a. Infect Immun 60:175–182PubMedCentralPubMedGoogle Scholar
  131. Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15PubMedGoogle Scholar
  132. Monchy S et al (2006) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776PubMedGoogle Scholar
  133. Morita T, Maki K, Aiba H (2005) RNase E-based ribonucleoprotein complexes: mechanical mRNA destabilization basis of noncoding RNAs mediated by bacterial. Genes Dev 19:2176–2186PubMedCentralPubMedGoogle Scholar
  134. Morris CE et al (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2:321–334PubMedGoogle Scholar
  135. Mouné S, Manac’h N, Hirschler A, Caumette P, Willison JC, Matheron R (1999) Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. Int J Syst Bacteriol 49:103–112PubMedGoogle Scholar
  136. Muller D et al (2006) Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. Int J Syst Evol Microbiol 56:1765–1769PubMedGoogle Scholar
  137. Nicholson B, Low D (2000) DNA methylation-dependent regulation of pef expression in Salmonella typhimurium. Mol Microbiol 35:728–742PubMedGoogle Scholar
  138. Normand P et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15PubMedCentralPubMedGoogle Scholar
  139. Ohmori M, Okamoto S (2004) Photoresponsive cAMP signal transduction in cyanobacteria. Photochem Photobiol Sci 3:503–511PubMedGoogle Scholar
  140. Parkinson JS, Ames P, Studdert CA (2005) Collaborative signalling by bacterial chemoreceptors. Curr Opin Microbiol 8:116–121PubMedGoogle Scholar
  141. Pierson EA, Wood DW, Cannon JG, Blachere FM, Pierson LS (1998) Interpopulation signaling via N-acylhomoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084Google Scholar
  142. Poussier S, Thoquet P, Trigalet-Demery D, Barthet S, Meyer D, Arlat M, Trigalet A (2003) Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene. Mol Microbiol 49:991–1003PubMedGoogle Scholar
  143. Rainey FA et al (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235PubMedCentralPubMedGoogle Scholar
  144. Ranjard L, Lignier L, Chaussod R (2006) Cumulative effects of short-term polymetal contamination on soil bacterial community structure. Appl Environ Microbiol 72:1684–1687PubMedCentralPubMedGoogle Scholar
  145. Reeve JN, Bailey KA, Li WT, Marc F, Sandman K, Soares DJ (2004) Archaeal histones: structures, stability and DNA binding. Biochem Soc Trans 32:227–230PubMedGoogle Scholar
  146. Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798PubMedCentralPubMedGoogle Scholar
  147. Santos CL, Tavares F, Thioulouse J, Normand P (2009) A phylogenomic analysis of bacterial helix-turn-helix transcription factors. FEMS Microbiol Rev 33:411–429PubMedGoogle Scholar
  148. Schenk ST, Stein E, Kogel KH, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Sig Beh 7:178–181Google Scholar
  149. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:e92PubMedCentralPubMedGoogle Scholar
  150. Schuhegger R et al (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918PubMedGoogle Scholar
  151. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079PubMedCentralPubMedGoogle Scholar
  152. Sharif DI, Gallon J, Smith CJ, Dudley E (2008) Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J 2:1171–1182PubMedGoogle Scholar
  153. Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295PubMedGoogle Scholar
  154. Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic 360 di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134PubMedGoogle Scholar
  155. Singer GA, Hickey DA (2003) Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317:39–47PubMedGoogle Scholar
  156. Sio CF et al (2006) Quorum quenching by an N-acylhomoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 74:1673–1682PubMedCentralPubMedGoogle Scholar
  157. Smith RS, Harris SG, Phipps R, Iglewski B (2002) The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184:1132–1139PubMedCentralPubMedGoogle Scholar
  158. Stack D, Neville C, Doyle S (2007) Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology 153:1297–1306PubMedGoogle Scholar
  159. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215PubMedGoogle Scholar
  160. Suar M, van der Meer JR, Lawlor K, Holliger C, Lal R (2004) Dynamics of multiple lin gene expression in Sphingomonas paucimobilis B90A in response to different hexachlorocyclohexane isomers. Appl Environ Microbiol 70:6650–6656PubMedCentralPubMedGoogle Scholar
  161. Subramoni S, Gonzalez JF, Johnson A, Péchy-Tarr M, Rochat L, Paulsen I, Loper JE, Keel C, Venturi V (2011) Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl Environ Microbiol 77:4579–4588Google Scholar
  162. Suzuki K, Babitzke P, Kushner SR, Romeo T (2006) Identification of a novel regulatory protein (CSRD) That the targets Global Regulatory RNAs CsrB and CSRC for degradation by RNase E. Genes Dev 20:2605–2617PubMedCentralPubMedGoogle Scholar
  163. Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148PubMedCentralPubMedGoogle Scholar
  164. Tekaia F, Yeramian E, Dujon B (2002) Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297:51–60PubMedGoogle Scholar
  165. Teplitski M et al (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146PubMedCentralPubMedGoogle Scholar
  166. Tischler AD, Camilli A (2005) Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73:5873–5882PubMedCentralPubMedGoogle Scholar
  167. Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296:1064–1066PubMedGoogle Scholar
  168. Turick CE, Knox AS, Leverette CL, Kritzas YG (2008) In situ uranium stabilization by microbial metabolites. J Environ Radioactiv 99:890–899Google Scholar
  169. Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chembiochem 10:205–216PubMedGoogle Scholar
  170. van den Broek D, Chin AWTF, Bloemberg GV, Lugtenberg BJ (2005) Molecular nature of spontaneous modifications in gacS which cause colony phase variation in Pseudomonas sp. strain PCL1171. J Bacteriol 187:593–600PubMedCentralPubMedGoogle Scholar
  171. van der Woude MW, Baumler AJ (2004) Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581–611PubMedCentralPubMedGoogle Scholar
  172. van Ham SM, van Alphen L, Mooi FR, van Putten JP (1993) Phase variation of H. influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. Cell 73:1187–1196PubMedGoogle Scholar
  173. Van Houdt R, Aertsen A, Moons P, Vanoirbeek K, Michiels CW (2006) N-acyl-L-homoserine lactone signal interception by Escherichia coli. FEMS Microbiol Lett 256:83–89PubMedGoogle Scholar
  174. van Keulen G, Hopwood DA, Dijkhuizen L, Sawers RG (2005) Gas vesicles in actinomycetes: old buoys in novel habitats? Trends Microbiol 13:350–354PubMedGoogle Scholar
  175. Vial L et al (2006) Phase variation and genomic architecture changes in Azospirillum. J Bacteriol 188:5364–5373PubMedCentralPubMedGoogle Scholar
  176. Vial L, Lepine F, Milot S, Groleau MC, Dekimpe V, Woods DE, Deziel E (2008) Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy- 2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190:5339–5352PubMedCentralPubMedGoogle Scholar
  177. Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jager JG, Huttenhofer A, Wagner EG (2003) RNomics in Escherichia coli detects new sRNA species and data and identify parallel transcriptional output in bacteria. Nucleic Acids Res 31:6435–6443PubMedCentralPubMedGoogle Scholar
  178. von Rad U et al (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85Google Scholar
  179. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037PubMedGoogle Scholar
  180. Waite RD, Struthers JK, Dowson CG (2001) Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol Microbiol 42:1223–1232PubMedGoogle Scholar
  181. Walsby AE (1978) The gas vesicles of aquatic prokaryotes. In: Relations between structure and function in the prokaryotic cells. Symposium of Society for General Microbiology, vol. 28. Cambridge/New York: Published for the Society for General Microbiology, Cambridge University Press, pp 327–358Google Scholar
  182. Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144PubMedCentralPubMedGoogle Scholar
  183. Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637–1651PubMedCentralPubMedGoogle Scholar
  184. Webre DJ, Wolanin PM, Stock JB (2003) Bacterial chemotaxis. Curr Biol 13:1247–1249Google Scholar
  185. Welsh DT, Bourgues S, Herbert RA, De Wit R (1996) Seasonal variation in nitrogen fixation (acetylene reduction) and sulphate reduction rates in the rhizosphere of Zostera noltii: nitrogen fixation by sulphate reducing bacteria. Mar Biol 125:619–628Google Scholar
  186. Williams P, Winzer K, Chan WC, Camara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362:1119–1134PubMedCentralPubMedGoogle Scholar
  187. Wisniewski-Dyé F, Downie JA (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81:397–407PubMedGoogle Scholar
  188. Wisniewski-Dyé F, Vial L (2008) Phase and antigenic variation mediated by genome modifications. Antonie Van Leeuwenhoek 94:493–515PubMedGoogle Scholar
  189. Wu M et al (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:e69PubMedCentralPubMedGoogle Scholar
  190. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197PubMedGoogle Scholar
  191. Xiang S, Yao T, An L, Xu B, Wang J (2005) 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata glacier at increasing depths. Appl Environ Microbiol 71:4619–4627PubMedCentralPubMedGoogle Scholar
  192. Yates EA et al (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646PubMedCentralPubMedGoogle Scholar
  193. Zasloff M (2002) Antimicrobial peptides in health and disease. N Engl J Med 347:1199–1200PubMedGoogle Scholar
  194. Zerhari K, Aurag J, Khbaya B, Kharchaf D, Filali-Maltouf A (2000) Phenotypic characteristics of rhizobia isolates nodulating acacia species in the arid and Saharan regions of Morocco. Lett Appl Microbiol 30:351–357PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Microbial Ecology CenterUMR CNRS 5557 / USC INRA 1364, Université Lyon 1VilleurbanneFrance
  2. 2.Institut des Sciences Analytiques et de Physico-chimie pour l’Environnement et les Matériaux (IPREM)UMR CNRS 5254, Université de Pau et des Pays de l’AdourPau CedexFrance

Personalised recommendations