Taxonomy and Phylogeny of Prokaryotes

  • Pierre Caumette
  • Céline Brochier-Armanet
  • Philippe Normand
Chapter

Abstract

Classification of prokaryotes is hierarchically organized into seven levels: kingdoms, phyla, classes, orders, families, genera, and species. In prokaryotes, because they reproduce by clonal fission, the species, considered as the basic unit of the biological diversity, faces several problems such as the definition of an individual. A bacterial strain can be recognized as an individual belonging to a species. However, many inconsistencies exist between phenotypic similarity levels and evolutionary relationships deduced from molecular phylogenies. Most taxonomic groups have been reconsidered through phylogenetic analysis in the 1980s, and a consensus has been reached on the need for coherence between taxonomy and phylogeny. Thus, the multiple revisions of species, genera, or higher taxonomic levels pose many complex problems that are solved gradually. Prokaryotic microorganisms correspond to two of the three domains of life: Archaea and Bacteria. Their systematics is described in the “Bergey’s Manual for Systematic Bacteriology, second edition” published in five volumes.

In the text, the Latin terms used are those accepted by the Nomenclature Committee, and the organization of the bacterial and archaeal domains is presented as they appear in the “Bergey’s Manual for Systematic Bacteriology.” They are discussed according to the recent data of the hierarchical classification of Prokaryotes.

Keywords

16S RNA homology Archaea Bacteria Bacterial taxonomy Dendrogram DNA/DNA hybridization Domains G + C% Genotypic criteria Phenotypic criteria Phylogenetic tree Phyla Systematics of prokaryotes 

References

  1. Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426PubMedCrossRefGoogle Scholar
  2. Bailly X, Olivieri I, De Mita S, Cleyet-Marel J-C, Bena G (2006) Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium sp. associated to Medicago. Mol Ecol 15:2719–2734PubMedCrossRefGoogle Scholar
  3. Bapteste E, Brochier C, Boucher Y (2005) Higher level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1:353–363PubMedCentralPubMedCrossRefGoogle Scholar
  4. Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A 93:9188–9193PubMedCentralPubMedCrossRefGoogle Scholar
  5. Beja O et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906PubMedCrossRefGoogle Scholar
  6. Boone DR, Castenholz RW (2001) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  7. Brenner DJ, Krieg NR, Staley JT (2005) Bergey’s manual of systematic bacteriology: the proteobacteria, vol 2, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  8. Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P (2005) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales. Genome Biol 6:R42PubMedCentralPubMedCrossRefGoogle Scholar
  9. Brochier-Aramanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252CrossRefGoogle Scholar
  10. Brochier-Armanet C, Forterre P, Gribaldo S (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 14:274–281PubMedCrossRefGoogle Scholar
  11. Brochier-Armanet C, Gribaldo S, Forterre P (2012) Spotlight on the Thaumarchaeota. ISME J 6:227–230PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cilia V, Lafay B, Christen R (1996) Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol 13:451–461PubMedCrossRefGoogle Scholar
  13. Cohan FM (2001) Bacterial species and speciation. Syst Biol 50:513–524PubMedCrossRefGoogle Scholar
  14. Costechareyre D, Bertolla F, Nesme X (2009) Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 26:167–176PubMedCrossRefGoogle Scholar
  15. Cox MM, Battista JR (2005) Deinococcus radiodurans the consummate survivor. Nat Rev Microbiol 3:882–892PubMedCrossRefGoogle Scholar
  16. Daubin V, Gouy M, Perriere G (2001) Bacterial molecular phylogeny using supertree approach. Genome Inform Ser Workshop 12:155–164Google Scholar
  17. de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WD (2008) Bergey’s manual of systematic bacteriology: the firmicutes, vol 3, 2nd edn. Springer, New YorkGoogle Scholar
  18. Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (2006) The prokaryotes – a handbook on the biology of bacteria, vol 3, 3rd edn. Springer, New YorkGoogle Scholar
  19. Dybvig K, Voelker LL (1996) Molecular biology of mycoplasmas. Annu Rev Microbiol 50:25–57PubMedCrossRefGoogle Scholar
  20. Elkins JG et al (2008) Akorarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 105:8102–8107PubMedCentralPubMedCrossRefGoogle Scholar
  21. Fleischmann RD et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512PubMedCrossRefGoogle Scholar
  22. Forterre P, Brochier C, Philippe H (2002) Evolution of the Archaea. Theor Popul Biol 61:409–422PubMedCrossRefGoogle Scholar
  23. Fox GE et al (1980) The phylogeny of prokaryotes. Science 209:457–463PubMedCrossRefGoogle Scholar
  24. Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746PubMedCrossRefGoogle Scholar
  25. Gevers D et al (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739PubMedCrossRefGoogle Scholar
  26. Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (2012) Bergey’s manual of systematic bacteriology: the actinobacteria, vol 5, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91PubMedCrossRefGoogle Scholar
  28. Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 361:1007–1022PubMedCentralPubMedCrossRefGoogle Scholar
  29. Grimont PA (1988) Use of DNA reassociation in bacterial classification. Can J Microbiol 34:541–546PubMedCrossRefGoogle Scholar
  30. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67PubMedCrossRefGoogle Scholar
  31. Imhoff JF, Caumette P (2004) Recommended standards for the description of new species of anoxygenic phototrophic bacteria. Int J Syst Evol Microbiol 54:1415–1421PubMedCrossRefGoogle Scholar
  32. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546PubMedCrossRefGoogle Scholar
  33. Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (2011) Bergey’s manual of systematic bacteriology: the Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycete, vol 4, 2nd edn. Springer, New YorkGoogle Scholar
  34. Lassalle F et al (2011) Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 3:762–781PubMedCentralPubMedCrossRefGoogle Scholar
  35. Leigh JA, Albers SV, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577–608PubMedCrossRefGoogle Scholar
  36. Linnaeus C (1753) Species plantarum. Stockholm. Holmiae: Impensis Laurentii SalviiGoogle Scholar
  37. Lopez-Garcia P, Moreira D (2008) Tracking microbial biodiversity through molecular and genomic ecology. Res Microbiol 159:67–73PubMedCrossRefGoogle Scholar
  38. Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New YorkGoogle Scholar
  39. Mougel C, Thioulouse J, Perriere G, Nesme X (2002) A mathematical method for determining genome divergence and species delineation using AFLP. Int J Syst Evol Microbiol 52:573–586PubMedGoogle Scholar
  40. Murray RG, Stackebrandt E (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187PubMedCrossRefGoogle Scholar
  41. Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (2011) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93PubMedCentralPubMedCrossRefGoogle Scholar
  42. Normand P, Lalonde M (1982) Evaluation of Frankia strains isolated from provenances of two Alnus species. J Can Microbiol 28:1133–1142CrossRefGoogle Scholar
  43. Ochman H, Elwyn S, Moran NA (1999) Calibrating bacterial evolution. Proc Natl Acad Sci U S A 96:12638–12643PubMedCentralPubMedCrossRefGoogle Scholar
  44. Paul K, Nonoh JO, Mikulski L, Brune A (2012) “Methanoplasmatales”, Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78:8245–8253PubMedCentralPubMedCrossRefGoogle Scholar
  45. Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306PubMedCentralPubMedCrossRefGoogle Scholar
  46. Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, Reysenbach AL (2013) Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol direct, Apr 22; 8-9. doi:10.1186/1745-6150-8-9
  47. Polzin KM, McKay LL (1991) Identification, DNA sequence, and distribution of IS981, a new, high-copynumber insertion sequence in lactococci. Appl Environ Microbiol 57:734–743PubMedCentralPubMedGoogle Scholar
  48. Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H, Stackebrandt E (1996) Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142:2087–2095PubMedCrossRefGoogle Scholar
  49. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  50. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated Archaea. Nat Rev Microbiol 3:479–488PubMedCrossRefGoogle Scholar
  51. Stacey G, Bottomley PJ, van Baalen C, Tabita FR (1979) Control of heterocyst and nitrogenase synthesis in Cyanobacteria. J Bacteriol 137:321–326PubMedCentralPubMedGoogle Scholar
  52. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  53. Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  54. Stackebrandt E, Liesack W, Goebel BM (1993) Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7:232–236PubMedGoogle Scholar
  55. Stackebrandt E et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047PubMedCrossRefGoogle Scholar
  56. Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431PubMedCentralPubMedCrossRefGoogle Scholar
  57. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995PubMedCrossRefGoogle Scholar
  58. Wayne LG et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  59. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedCentralPubMedGoogle Scholar
  60. Woese CR (2007) The birth of the Archaea: a personal retrospective. In: Garrett RA, Klenk HP (eds) Archaea: evolution, physiology, and molecular biology. Blackwell publishing, Oxford, pp 1–15Google Scholar
  61. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090PubMedCentralPubMedCrossRefGoogle Scholar
  62. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedCentralPubMedCrossRefGoogle Scholar
  63. Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pierre Caumette
    • 1
  • Céline Brochier-Armanet
    • 2
  • Philippe Normand
    • 3
  1. 1.Institut des Sciences Analytiques et de Physico-chimie pour l’Environnement et les Matériaux (IPREM)UMR CNRS 5254, Université de Pau et des Pays de l’AdourPau CedexFrance
  2. 2.Laboratoire de Biométrie et Biologie ÉvolutiveUMR CNRS 5558, Université Claude Bernard Lyon 1Villeurbanne CedexFrance
  3. 3.Microbial Ecology CenterUMR CNRS 5557 / USC INRA 1364, Université Lyon 1VilleurbanneFrance

Personalised recommendations