Some Historical Elements of Microbial Ecology

  • Pierre Caumette
  • Jean-Claude Bertrand
  • Philippe Normand


We present briefly, first, the history of the discovery of microorganisms and particularly bacteria with the pioneering works of Antoni van Leeuwenhoek, Louis Pasteur, and Robert Koch, essentially. In a second and more detailed part, the history of microbial ecology is presented with particularly the very important work of Sergei Winogradsky and his discoveries of the main bacterial groups active in biogeochemical cycles. It is followed by a description of the major microbial ecologists who have been very active in promoting and developing microbial ecology throughout the world. Their role in the advances of microbial ecology is presented and discussed.


Antoni van Leeuwenhoek History of microbiology Louis Pasteur Microbial ecology Microorganisms discovery Robert Koch Sergei Winogradsky 


  1. Atlas R, Bartha R (1998) Microbial ecology, fundamental and applications, 4th edn. Addison Wesley Longman, ReadingGoogle Scholar
  2. Beijerinck MW (1888) Die Bacterien der Papilionaceen-Knöllchen. Bot Ztg 46:725–735Google Scholar
  3. Beijerinck WM (1895) Über Spirillum desulfuricans als Ursache von Sulfat-reduktion. Zentralbl Bakteriol Abt L 1–9:104–114Google Scholar
  4. Bianchi M, Marty D, Bertrand J-C, Caumette P, Gauthier M (1989) Micro-organismes dans les écosystèmes océaniques. Masson, ParisGoogle Scholar
  5. Cagniard de La Tour C (1838) Mémoire sur la fermentation vineuse. Ann Chim Phys 68:206–222Google Scholar
  6. Cananaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Procaryotics cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–341CrossRefGoogle Scholar
  7. Chaiyanan S, Huq A, Maugel T, Colwell RR (2001) Viability of the nonculturable Vibrio cholerae O1 and O139. Syst Appl Microbiol 24:331–341PubMedCrossRefGoogle Scholar
  8. Cohen Y, Krumbein WE, Shilo M (1977) Solar Lake (Sinai). Distribution of photosynthetic microorganisms. Limnol Oceanogr 22:609–620CrossRefGoogle Scholar
  9. Cohn F (1876) Untersuchungen uber Bakterien IV. Beitrage zur Biologie der Bacillen. Beitr Biol Pflanzen 2:249–276Google Scholar
  10. Colwell RR, Morita RY (1974) The effects of the ocean environment on microbial activities. University Park Press, BaltimoreGoogle Scholar
  11. d’Hérelle F (1921) Le Bactériophage: Son rôle dans l’Immunité. Masson, Paris, 227 pGoogle Scholar
  12. de Saussure NT (1804) Recherches chimiques sur la végétation. Vve Nyon, Paris, 327 pGoogle Scholar
  13. Degrange V, Bardin R (1995) Detection and counting of Nitrobacter populations in soil by PCR. Appl Environ Microbiol 61:2093–2098PubMedCentralPubMedGoogle Scholar
  14. Deherain PP (1897) La réduction des nitrates dans la terre arable. C R Acad Sci Paris 124:269–273Google Scholar
  15. Diem H, Gauthier D, Dommergues Y (1983) An effective strain of Frankia from Casuarina sp. Can J Bot 61:2815–2821CrossRefGoogle Scholar
  16. Dobell C (1923) A protozoological bicentenary: Antony van Leeuwenhoek (1632–1723) and Louis Joblot (1645–1723). Parasitology 15:308–319CrossRefGoogle Scholar
  17. Dommergues Y, Mangenot F (1970) Écologie microbienne du sol. Masson, ParisGoogle Scholar
  18. Ducluzeau R, Raibaud P (1979) Écologie microbienne du tube digestif. INRA and Masson, ParisGoogle Scholar
  19. Fenchel T, Blackburn H (1979) Bacteria and mineral cycling. Academic Press, LondonGoogle Scholar
  20. Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236PubMedCentralGoogle Scholar
  21. Haeckel E (1866) Generelle Morphologie. I: Allgemeine Anatomie der Organismen. II: Allgemeine Entwickelungsgeschichte der Organismen. Reimer, BerlinCrossRefGoogle Scholar
  22. Hungate R (1966) The rumen and its microbes. Academic Press, New YorkGoogle Scholar
  23. Ivanovski D, Polovtsev VV (1890) Die Pockenkrankheit der Tabakspflanze. Mem Acad Sci St Petersbourg Ser 7(37):1–24Google Scholar
  24. Jannasch HW, Taylor CD (1984) Deep sea microbiology. Annu Rev Microbiol 38:487–514PubMedCrossRefGoogle Scholar
  25. Jannasch HW, Wirsen CO, Winget CL (1973) A bacteriological pressure-retaining deep-sea sampler and culture vessel. Deep-Sea Res 20:661–664Google Scholar
  26. Jannasch HW, Wirsen CO, Taylor CD (1982) Deep sea bacteria: isolation in the absence of decompression. Science 216:1315–1317PubMedCrossRefGoogle Scholar
  27. Jannash HW, Wirsen CO, Doherty KM (1996) A pressurized chemostat for the study of marine barophile and oligotrophic bacteria. Appl Environ Microbiol 62:1593–1596Google Scholar
  28. Jørgensen BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24:189–201CrossRefGoogle Scholar
  29. Jørgensen BB, Revsbech NP, Blackburn TH, Cohen Y (1979) Diurnal cycles of oxygen and sulphide microgradients and microbial photosynthesis in a cyanobacterial mat. Appl Environ Microbiol 38:46–58PubMedCentralPubMedGoogle Scholar
  30. Kaserer H (1906) Die oxydation des Wasserstoffs durch Mikroorganismen. Zentralbl Bakteriol II Abt 16:681–696Google Scholar
  31. Koch R (1882) Die Aetiologie der Tuberculose. Berl Klin Wochenschr 19:221–230Google Scholar
  32. Koch R (1883) Ueber die neuen Untersuchungsmethoden zum Nachweis der Mikroorganismen in Boden, Luft und Wasser. Aerztliches Vereinsblatt für Dtschl 237:244–250Google Scholar
  33. Kützing FT (1837) Microscopische Untersuchungen über die Hefe und Essigmutter, nebst mehreren andern dazu gehörigen vegetabilischen Gebilden. J Prakt Chem 11:385–409CrossRefGoogle Scholar
  34. Le Coustumier A (2010) Louis Joblot et ses microscopes. Bull Soc F Microbiol 25:89–100Google Scholar
  35. Le Gall J, Fauque G (1988) Dissimilatory reduction of sulfur compounds. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 587–640Google Scholar
  36. Lechevalier H (1976) Louis Joblot and his microscopes. Bacteriol Rev 40:241–258PubMedCentralPubMedGoogle Scholar
  37. Madigan M, Martinko JM, Stahl D, Clark DP (2010) Brock: biology of Microorganisms, 13th edn. Pearson Benjamin-Cummings, San FranciscoGoogle Scholar
  38. Morita R (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedCentralPubMedGoogle Scholar
  39. Pasteur L (1857) Mémoire sur la fermentation alcoolique. C R Acad Sci Paris 45:1032–1036Google Scholar
  40. Pasteur L (1860) Mémoire sur la fermentation alcoolique. Ann Chim Phys 58:323–426Google Scholar
  41. Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 926–940CrossRefGoogle Scholar
  42. Pochon J, De Barjac H (1958) Traité de microbiologie du sol. Dunod, ParisGoogle Scholar
  43. Pochon J, Tardieux P (1962) Techniques d’analyses en microbiologie du sol. éditions de la Tourelle, Saint MandéGoogle Scholar
  44. Postgate J (1998) Nitrogen fixation, 3rd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  45. Rous P (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411PubMedCentralPubMedCrossRefGoogle Scholar
  46. Schloesing J, Muntz A (1877) Sur la Nitrification par les Ferments Organisés. C R Acad Sci Paris 84:301–303Google Scholar
  47. Schwann T (1837) Vorläufige Mittheilung, bettreffend Versuche über die Weingährung und Fäulniss. Ann Chim Phys 41:184–193CrossRefGoogle Scholar
  48. Semmelweis IP (1861) Die Aetiologie der Begriff und die Prophylaxis des Kindbettfiebers. Hartleben, Pest, Vienna/LeipzigGoogle Scholar
  49. Senez J (1968) Microbiologie générale. Doin, ParisGoogle Scholar
  50. Seow KT, Meurer G, Gerlitz M, Wendt-Pienkowski E, Hutchinson CR, Davies J (1997) A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J Bacteriol 179:7360–7368PubMedCentralPubMedGoogle Scholar
  51. Söhngen NL (1906) Über Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 15:513–517Google Scholar
  52. Stanier RY, Aldelberg EA, Ingraham J-L (1976) The microbial world. Prentice Hall, Englewood CliffsGoogle Scholar
  53. Stanier RY, Pfennig N, Trüper HG (1981) Introduction to the phototrophic prokaryotes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 197–211CrossRefGoogle Scholar
  54. Tyndall J (1877) On heat as a germicide when discontinuously applied. Proc R Soc Lond 25:569CrossRefGoogle Scholar
  55. van Gemerden H, Tughan R, de Wit R, Herbert A (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62:87–102CrossRefGoogle Scholar
  56. Winogradsky SN (1887) Über Schwefelbakterien. Bot Ztg 45:489–600Google Scholar
  57. Winogradsky SN (1888) Über Eisenbakterien. Bot Ztg 46:261–270Google Scholar
  58. Winogradsky SN (1890) Sur les organismes de la nitrification. C R Acad Sci Paris 60:1013–1016Google Scholar
  59. Winogradsky S (1949) Microbiologie du sol. Problèmes et méthodes. Masson, ParisGoogle Scholar
  60. ZoBell CE (1946) Marine microbiology. Chronica Botanica Compagny, WaltmanGoogle Scholar
  61. ZoBell CE (1950) Assimilation of hydrocarbons by microorganisms. In: Nord FF (ed) Advances in enzymology. Interscience Publishers, New York/London, pp 443–486Google Scholar
  62. ZoBell CE (1952) Bacterial life at the bottom of the Philippine Trench. Science 115:507–508PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pierre Caumette
    • 1
  • Jean-Claude Bertrand
    • 2
  • Philippe Normand
    • 3
  1. 1.Institut des Sciences Analytiques et de Physico-chimie pour l’Environnement et les Matériaux (IPREM)UMR CNRS 5254, Université de Pau et des Pays de l’AdourPau CedexFrance
  2. 2.Institut Méditerranéen d’Océanologie (MIO)UM 110, CNRS 7294 IRD 235, Université de Toulon, Aix-Marseille UniversitéMarseille Cedex 9France
  3. 3.Microbial Ecology CenterUMR CNRS 5557 / USC INRA 1364, Université Lyon 1VilleurbanneFrance

Personalised recommendations