Advertisement

Modeling in Microbial Ecology

  • Jean-Christophe PoggialeEmail author
  • Philippe Dantigny
  • Rutger De Wit
  • Christian Steinberg
Chapter

Abstract

The bases and the principles of modeling in microbial community ecology and biogeochemistry are presented and discussed. Several examples are given. Among them, the fermentation process is largely developed, thus demonstrating how the model allows determining the microbial population growth rate, the death rate, and the maintenance rate. More generally, these models have been used to increase the development of bioenergetic formulations which are presently used in biogeochemical models (Monod, Droop, DEB models). Different types of interactions (competition, predation, and virus–bacteria) are also developed. For each topic, a complete view of the models used in the literature cannot be presented. Consequently, the focus has been done on the demonstration how to build a model instead of providing a long list of existing models. Some recent results in sediment biogeochemistry are provided to illustrate the application of such models.

Keywords

Biofilm models Biotic interactions Chemostat Fermenter models Metabolic models Population dynamics 

References

  1. Bailey DJ, Otten W, Gilligan CA (2000) Saprotrophic invasion by the soil-borne fungal plant pathogen Rhizoctonia solani and percolation thresholds. New Phytol 146:535–544CrossRefGoogle Scholar
  2. Becks L, Hilker FM, Malchow H, Jürgens K, Arndt H (2005) Experimental demonstration of chaos in a microbial food web. Nature 435:1226–1229PubMedCrossRefGoogle Scholar
  3. Beretta E, Kuang Y (1998) Modeling and analysis of a marine bacteriophage infection. Math Biosci 149:57–76PubMedCrossRefGoogle Scholar
  4. Boer MP, Kooi BW, Kooijman SALM (1998) Food chain dynamics in the Chemostat. Math Biosci 150:43–62PubMedCrossRefGoogle Scholar
  5. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631CrossRefGoogle Scholar
  6. Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K (2003) Growth and function of fungal mycelia in heterogeneous environments. Bull Math Biol 65:447–477PubMedCrossRefGoogle Scholar
  7. Boudreau PB (1997) Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  8. Brauer F, Castillo-Chavez C (2000) Mathematical models in population biology and epidemiology, vol 40, Texts in applied mathematics. Springer-Verlag, New YorkGoogle Scholar
  9. Coleman D, Fu SL, Hendrix P, Crossley D (2002) Soil foodwebs in agroecosystems: impacts of herbivory and tillage management. Eur J Soil Biol 38:21–28CrossRefGoogle Scholar
  10. Costerton JW, Lewandowski Z, De Beer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176:2137–2142PubMedCentralPubMedGoogle Scholar
  11. Couteaudier Y, Steinberg C (1990) Biological and mathematical description of growth pattern of Fusarium oxysporum in sterilized soil. FEMS Microbiol Ecol 74:253–259CrossRefGoogle Scholar
  12. Cunningham A, Maas P (1978) Time lag and nutrient storage effects in the transient growth response of Chlamydomonas reinhardtii in nitrogen limited batch and continuous culture. J Gen Microbiol 104:227–231CrossRefGoogle Scholar
  13. Dantigny P (2004) Predictive mycology. In: McKellar RC, Lu X (eds) Modeling microbial responses in food. CRC Press, Boca Raton, pp 313–320Google Scholar
  14. Dassonville F, Renault P (2002) Interactions between microbial processes and geochemical transformations under anaerobic conditions: a review. Agronomie 22:51–68CrossRefGoogle Scholar
  15. De Wit R, Van den Ende FP, Van Gemerden H (1995) Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities. FEMS Microbiol Ecol 17:117–136CrossRefGoogle Scholar
  16. Decker KLM et al (2005) Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. FEMS Microbiol Ecol 52:377–395PubMedCrossRefGoogle Scholar
  17. Droop MR (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Mar Biol Assoc UK 48:689–733CrossRefGoogle Scholar
  18. Fu SL, Cabrera ML, Coleman DC, Kisselle KW, Garrett CJ, Hendrix PF, Crossley DA (2000) Soil carbon dynamics of conventional tillage and no-till agroecosystems at Georgia Piedmont – HSB-C models. Ecol Model 131:229–248CrossRefGoogle Scholar
  19. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548PubMedCrossRefGoogle Scholar
  20. Fujikawa H, Yano K, Morozumi S (2006) Characteristics and modeling of Escherichia coli growth in pouched food. Shokuhin Eiseigaku Zasshi 47:95–98PubMedCrossRefGoogle Scholar
  21. Fussmann GF, Blasius B (2005) Community response to enrichment is highly sensitive to model structure. Biol Lett 1:9–12PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fussmann GF, Ellner SP, Shertzer KW, Hairston NG Jr (2000) Crossing the Hopf bifurcation in a live predator-prey system. Science 290:1358–1360PubMedCrossRefGoogle Scholar
  23. Gabrielle B, Laville P, Henault C, Nicoullaud B, Germon JC (2006) Simulation of nitrous oxide emissions from wheat-cropped soils using CERES. Nut Cycl Agroecosyst 74:133–146CrossRefGoogle Scholar
  24. Gause GF (1935) Vérifications expérimentales de la théorie mathématique de la lutte pour la vie. Actual Scient Ind 277Google Scholar
  25. Ghosh S, Bhattacharyya S, Bhattacharya DK (2007) The role of viral infection in pest control: a mathematical study. Bull Math Biol 69:2649–2691PubMedCrossRefGoogle Scholar
  26. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 80:274–287Google Scholar
  27. Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 45:1–60CrossRefGoogle Scholar
  28. Kooijman SALM (2010) Dynamic energy and mass budgets in biological systems, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  29. Kreft JU (2004) Biofilms promote altruism. Microbiology 150:2751–2760PubMedCrossRefGoogle Scholar
  30. Kreft JU, Picioreanu C, Wimpenny JWT, Van Loosdrecht MCM (2001) Individual-based modelling of biofilms. Microbiology 147:2897–2912PubMedGoogle Scholar
  31. Lejeune R, Baron GV (1998) Modelling the exponential growth of filamentous fungi during batch cultivation. Biotech Bioeng 60:169–179CrossRefGoogle Scholar
  32. Li H, Xie GH, Edmondson A (2007) Evolution and limitations of primary mathematical models in predictive microbiology. Br Food J 109:608–626CrossRefGoogle Scholar
  33. Maynard-Smith J (1978) Models in ecology. Cambridge University Press, CambridgeGoogle Scholar
  34. Mchich R, Auger P, Poggiale J-C (2007) Effect of predator density dependent dispersal of prey on stability of a predator-prey system. Math Biosci 206:343–356PubMedCrossRefGoogle Scholar
  35. Middelboe M (2000) Bacterial growth rate and marine virus-host dynamics. Microb Ecol 40:114–124PubMedGoogle Scholar
  36. Middelboe M, Hagstrom A, Blackburn N, Sinn B, Fischer U, Borch NH, Pinhassi J, Simu K, Lorenz MG (2001) Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Microb Ecol 42:395–406PubMedCrossRefGoogle Scholar
  37. Mitra A, Davidson K, Flynn KJ (2003) The influence of changes in predation rates on marine microbial predator/prey interactions: a modelling study. Acta Oecol Int J Ecol 24:S359–S367CrossRefGoogle Scholar
  38. Monti GE, Frankena K, De Jong MCM (2007) Transmission of bovine leukaemia virus within dairy herds by simulation modelling. Epidemiol Infect 135:722–732PubMedCentralPubMedCrossRefGoogle Scholar
  39. Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ‘omic’ analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16PubMedCrossRefGoogle Scholar
  40. Mulder MM (1988) Energetic aspects of bacterial growth: a mosaic non – equilibrium thermodynamic approach. PhD thesis, Amsterdam UniversiteitGoogle Scholar
  41. Patwardhan PR, Srivastava AK (2004) Model-based fed-batch cultivation of R. eutropha for enhanced biopolymer production. Biochem Eng J 20:21–28CrossRefGoogle Scholar
  42. Pavé A (2006) By way of introduction: modelling living systems, their diversity and their complexity: some methodological and theoretical problems. C R Biol 329:3–12PubMedCrossRefGoogle Scholar
  43. Pavé A (2007) Necessity of chance: biological roulettes and biodiversity. C R Biol 330:189–198PubMedCrossRefGoogle Scholar
  44. Picioreanu C (1999) Multidimensional modeling of biofilm structure. PhD thesis, Department of Biotechnology, TU Delft. ISBN 90-90133110-0Google Scholar
  45. Picioreanu C, Van Loosdrecht MCM, Heijnen J (1998) Mathematical modelling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58:101–116PubMedCrossRefGoogle Scholar
  46. Poggiale J-C, Auger P, Nérini D, Manté C, Gilbert F (2005) Global production increased by spatial heterogeneity in a population dynamics model. Acta Biotheor 53:359–370PubMedCrossRefGoogle Scholar
  47. Poggiale J-C, Baklouti M, Queguiner B, Kooijman SALM (2010) How far details are important in ecosystem modelling: the case of multi-limiting nutrients in phytoplankton – zooplankton interactions. Philos Trans R Soc Lond B Biol Sci 365:3495–3507PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ponciano JM, Vandecasteele FPJ, Hess TF, Forney LJ, Crawford RL, Joyce P (2005) Use of stochastic models to assess the effect of environmental factors on microbial growth. Appl Environ Microbiol 71:2355–2364PubMedCentralPubMedCrossRefGoogle Scholar
  49. Ronn R, McCaig AE, Griffiths BS, Prosser JI (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105PubMedCentralPubMedCrossRefGoogle Scholar
  50. Rosenzweig ML (1971) The paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171:385–387PubMedCrossRefGoogle Scholar
  51. Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97:209–223CrossRefGoogle Scholar
  52. Rosso L, Lobry JR, Bajard S, Flandrois JP (1993) An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol 162:447–463PubMedCrossRefGoogle Scholar
  53. Sloan WT, Woodcock S, Lunn M, Head IM, Curtis TP (2007) Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb Ecol 53:443–455PubMedCrossRefGoogle Scholar
  54. Smith LH (1997) The periodically forced Droop model for phytoplankton growth in a chemostat. J Math Biol 35:545–556CrossRefGoogle Scholar
  55. Solomon E (1949) The natural control of animal populations. J Anim Ecol 18:1–35CrossRefGoogle Scholar
  56. Steinberg C, Whipps JM, Wood DA, Fenlon J, Alabouvette C (1999) Effects of nutritional sources on growth of one non-pathogenic strain and four strains of Fusarium oxysporum pathogenic on tomato. Mycol Res 103:1210–1216CrossRefGoogle Scholar
  57. Stelling J (2004) Mathematical models in microbial systems biology. Curr Opin Microbiol 7:513–518PubMedCrossRefGoogle Scholar
  58. Takeuchi Y, Adachi N (1983) Existence and bifurcation of stable equilibrium in two-prey-one-predator communities. Bull Math Biol 45:877–900CrossRefGoogle Scholar
  59. Tam VH, Schilling AN, Nikolaou M (2005) Modelling time-kill studies to discern the pharmacodynamics of meropenem. J Antimicrob Chemother 55:699–706PubMedCrossRefGoogle Scholar
  60. Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245PubMedCrossRefGoogle Scholar
  61. van den Berg HA, Kiselev YN, Kooijman SALM, Orlov MV (1998) Optimal allocation between nutrient uptake and growth in a microbial trichome. J Math Biol 37:28–48CrossRefGoogle Scholar
  62. Van Impe JF, Poschet F, Geeraerd AH, Vereecken KM (2005) Towards a novel class of predictive microbial growth models. Int J Food Microbiol 100:97–105PubMedCrossRefGoogle Scholar
  63. Vayenas DV, Pavlou S (1999) Chaotic dynamics of a food web in a chemostat. Math Biosci 162:69–84PubMedCrossRefGoogle Scholar
  64. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedCentralPubMedGoogle Scholar
  65. Wood JC, McKendrick IJ, Gettinby G (2006) A simulation model for the study of the within-animal infection dynamics of E. coli O157. Prev Vet Med 74:180–193PubMedCrossRefGoogle Scholar
  66. Zhang XS, Holt J, Colvin J (2000) A general model of plant-virus disease infection incorporating vector aggregation. Plant Pathol 49:435–444CrossRefGoogle Scholar
  67. Zwietering MH, Witjes T, de Wit JC, van’t Riet K (1992) A decision support system for prediction of the microbial spoilage in foods. J Food Protect 12:973–979Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jean-Christophe Poggiale
    • 1
    Email author
  • Philippe Dantigny
    • 2
  • Rutger De Wit
    • 3
  • Christian Steinberg
    • 4
  1. 1.Institut Méditerranéen d’Océanologie (MIO)UM 110, CNRS 7294 IRD 235, Université de Toulon, Aix-Marseille Université, Campus de LuminyMarseille Cedex 9France
  2. 2.Laboratoire des procédés alimentaires et microbiologiquesUMR PAM, AgroSup Dijon et Université de BourgogneDijonFrance
  3. 3.Écologie des systèmes marins côtiers (ECOSYM, UMR5119)Universités Montpellier 2 et 1, CNRS-Ifremer-IRDMontpellier Cedex 05France
  4. 4.Pôle des Interactions Plante-MicroorganismesINRA UMR 1347 Agroécologie, AgroSup-INRA-Université de BourgogneDijon CedexFrance

Personalised recommendations