Advertisement

Methods for Studying Microorganisms in the Environment

  • Fabien JouxEmail author
  • Jean-Claude Bertrand
  • Rutger De Wit
  • Vincent Grossi
  • Laurent Intertaglia
  • Philippe Lebaron
  • Valérie Michotey
  • Philippe Normand
  • Pierre Peyret
  • Patrick Raimbault
  • Christian Tamburini
  • Laurent Urios
Chapter

Abstract

The main methods for the study of microorganisms in the environment (water, soil, sediment, biofilms), the different techniques of sampling for measuring biomass, the activities, and the diversity of the microorganisms are presented. To respond to these various issues, techniques as varied as those of flow cytometry, molecular biology, biochemistry, molecular isotopic tools, or electrochemistry are implemented. These different techniques are described with their advantages and disadvantages for different types of biotopes. The question of the isolation, culture, and conservation of microorganisms from the environment are also addressed. Without being exhaustive, this chapter emphasizes the importance of using appropriate and efficient methodological tools to properly explore the still mysterious compartment of microorganisms in the environment.

Keywords

Bacterial isolation Biomarkers Cultural techniques Cytometry DNA microarray Microbial activities Microelectrodes Molecular fingerprints PCR Phospholipid fatty acid analyses Pigment analyses Sampling techniques 

References

  1. Agogué H et al (2004) Comparison of samplers for the biological characterization of the air-seawater interface. Limnol Oceanogr Methods 2:213–225Google Scholar
  2. Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594PubMedGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  4. Aminot A, Rey F (2002) Chlorophyll a determination by spectrometric methods. ICES Techn Mat Environ Sci 30:18pGoogle Scholar
  5. Andersson BA, Holman RT (1974) Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids 9:185–190PubMedGoogle Scholar
  6. Aries E, Doumenq P, Artaud J, Acquaviva M, Bertrand J-C (2001) Effects of petroleum hydrocarbons on the phospholipid fatty acid composition of a consortium composed of marine hydrocarbon-degrading bacteria. Org Geochem 32:891–903Google Scholar
  7. Arigon AM, Perriere G, Gouy M (2008) Automatic identification of large collections of protein-coding or rRNA sequences. Biochimie 90:609–614PubMedGoogle Scholar
  8. Arístegui JG, Josep M, Duarte CM, Herndl G (2009) Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr 54:1501–1529Google Scholar
  9. Ashkin A, Dziedzic JM, Yamane Y (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771PubMedGoogle Scholar
  10. Balkwill DL, Leach FR, Wilson JT, McNabb JF, White DC (1988) Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microbiol Ecol 16:73–84Google Scholar
  11. Bartlett DH, Lauro FM, Eloe EA (2007) Microbial adaptation to high pressure. In: Gerday C, Glandsdorf N (eds) Physiology and biochemistry of extremophiles. American Society for Microbiology Press, Washington, DC, pp 333–348Google Scholar
  12. Basso O, Lascourrèges JF, Jarry M, Magot M (2005) The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environ Microbiol 7:13–21PubMedGoogle Scholar
  13. Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnol Oceanogr 43:1500–1510Google Scholar
  14. Berry AE, Chiocchini C, Selby T, Sosio M, Wellington M (2003) Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol Lett 223:15–20PubMedGoogle Scholar
  15. Bianchi A, Garcin J (1993) In stratified waters the metabolic rate of deep-sea bacteria decreases with decompression. Deep-Sea Res I 40:1703–1710Google Scholar
  16. Bianchi A, Garcin J, Tholosan O (1999) A high-pressure serial sampler to measure microbial activity in the deep sea. Deep-Sea Res 46:2129–2142, Part 1Google Scholar
  17. Bimet F (2007) Conservation des bactéries. Actualités permanentes en bactériologie clinique. Editions ESKA, ParisGoogle Scholar
  18. Birgel D, Peckmann J (2008) Aerobic methanotrophy at ancient marine methane seeps: a synthesis. Org Geochem 39:1659–1667Google Scholar
  19. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 35:911–917Google Scholar
  20. Bochdansky AB, van Aken HM, Herndl GJ (2010) Role of macroscopic particles in deep-sea oxygen consumption. Proc Natl Acad Sci U S A 107:8287–8291PubMedCentralPubMedGoogle Scholar
  21. Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95PubMedGoogle Scholar
  22. Boschker HTS, Nold SC, Wellsburry P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805Google Scholar
  23. Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319Google Scholar
  24. Briand E, Pringault O, Jacquet S, Torréton J-P (2004) The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency. Limnol Oceanogr Methods 2:406–416Google Scholar
  25. Brodie EL et al (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298PubMedCentralPubMedGoogle Scholar
  26. Bronk DA, Glibert P (1991) A 15N tracer method for the measurement of dissolved organic nitrogen release by phytoplankton. Mar Ecol Prog Ser 77:171–182Google Scholar
  27. Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987PubMedCentralPubMedGoogle Scholar
  28. Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891PubMedCentralPubMedGoogle Scholar
  29. Canuel EA, Freeman KH, Wakeham SG (1997) Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnol Oceanogr 42:1570–1583Google Scholar
  30. Carrignan R, Blais A-M, Vis C (1998) Measurement of primary production and community respiration in oligotrophic lakes using Winkler method. Can J Fish Aquat Sci 55:1078–1084Google Scholar
  31. Cebron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Nutrient amendments in soil DNA stable isotope probing experiments reduce observed methanotroph diversity. Appl Environ Microbiol 73:798–807, Epub 2006 Nov 22PubMedCentralPubMedGoogle Scholar
  32. Certes A (1884) Sur la culture, à l’abri des germes atmosphériques, des eaux et des sédiments rapportés par les expéditions du Travailleur et du Talisman. C R Acad Sci Paris 98:690–693Google Scholar
  33. Cho BC, Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332:441–443Google Scholar
  34. Cho J-C, Giovannoni SJ (2004) Cultivation and growth characteristic of a diverse group of oligotrophic marine gammaproteobacteria. Appl Environ Microbiol 70:432–440PubMedCentralPubMedGoogle Scholar
  35. Connon SA, Giovannoni SJ (2002) High-throughput methods for culturating microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885PubMedCentralPubMedGoogle Scholar
  36. Dalma-Weiszhausz DD, Warrington J, Tanimoto EY, Miyada CG (2006) The affymetrix GeneChip platform: an overview. Methods Enzymol 410:3–28PubMedGoogle Scholar
  37. Davidson EA, Savage K, Verchot LV, Navarro R (2002a) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37Google Scholar
  38. Davidson K, Roberts EC, Gilpin AC (2002b) The relationship between carbon and biovolume in marine microbial mesocosm under different nutrient regimes. Eur J Phycol 37:501–507Google Scholar
  39. De Bruyn JC, Boogerd FC, Bos P, Gijs Kuenen J (1990) Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl Environ Microbiol 56:2891–2894PubMedCentralPubMedGoogle Scholar
  40. Del Giorgio P, Cole J-J (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541Google Scholar
  41. Deming JW (1985) Bacterial growth in deep-sea sediment trap and boxcore samples. Mar Ecol Prog Ser 25:305–312Google Scholar
  42. Deming JW, Tabor PS, Colwell RR (1980) Deep ocean microbiology. In: Diemer F, Vernberg J, Mirkes D (eds) Advanced concepts in Ocean Measurements for Marine Biology. University of South Carolina Press, Columbia, pp 285–305Google Scholar
  43. Denonfoux J, Parisot N, Dugat-Bony E, Biderre-Petit C, Boucher D, Morgavi DP et al (2013) Gene capture coupled to high-throughput sequencing as a strategy for targeted metagenome exploration. DNA Res 20:185–196PubMedCentralPubMedGoogle Scholar
  44. Devulder G, Perriere G, Baty F, Flandrois JP (2003) BIBI, a Bioinformatics Bacterial Identification Tool. J Clin Microbiol 41:1785–1787PubMedCentralPubMedGoogle Scholar
  45. Dharmadi Y, Gonzalez R (2004) DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog 20:1309–1324PubMedGoogle Scholar
  46. Dong Y, Glasner JD, Blattner FR, Triplett EW (2001) Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl Environ Microbiol 67:1911–1921PubMedCentralPubMedGoogle Scholar
  47. Dowling NJE, Widdel F, White DC (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulfide-forming bacteria. J Gen Microbiol 132:1815–1825Google Scholar
  48. Dugat-Bony E, Missaoui M, Peyretaillade E, Biderre-Petit C, Bouzid O, Gouinaud C et al (2011) HiSpOD: probe design for functional DNA microarrays. Bioinformatics 27:641–648PubMedGoogle Scholar
  49. Dugat-Bony E, Biderre-Petit C, Jaziri F, David MM, Denonfoux J, Lyon DY et al (2012a) In situ TCE degradation mediated by complex dehalorespiring communities during biostimulation processes. Microb Biotechnol 5:642–653PubMedCentralPubMedGoogle Scholar
  50. Dugat-Bony E, Peyretaillade E, Parisot N, Biderre-Petit C, Jaziri F, Hill D et al (2012b) Detecting unknown sequences with DNA microarrays: explorative probe design strategies. Environ Microbiol 14:356–371PubMedGoogle Scholar
  51. Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206Google Scholar
  52. Dumont MG, Murrell JC (2005) Stable isotope probing – linking microbial identity to function. Nat Rev Microbiol 3:499–504PubMedGoogle Scholar
  53. Ehrenreich A (2006) DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol 73:255–273PubMedGoogle Scholar
  54. Ericsson M, Hanstorp D, Hagberg P, Enger J, Nyström T (2000) Sorting out bacterial viability with optical tweezers. J Bacteriol 182:5551–5555PubMedCentralPubMedGoogle Scholar
  55. Fang J, Barcelona MJ, Abrajano T, Nogi Y, Kato C (2002) Isotopic composition of fatty acids of extremely piezophilic bacteria from the Mariane Trench at 11,000 m. Mar Chem 80:1–9Google Scholar
  56. Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422PubMedGoogle Scholar
  57. Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: Pathways and prospects. J Mol Microbiol Biotechnol 15:93–120PubMedGoogle Scholar
  58. Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Oceanogr 16:147–194Google Scholar
  59. Freeman KH, Wakeham SG, Hayes JM (1994) Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins. Org Geochem 21:629–644PubMedGoogle Scholar
  60. Frostegård A et al (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420PubMedCentralPubMedGoogle Scholar
  61. Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358PubMedCentralPubMedGoogle Scholar
  62. Furhman JA (2000) Impact of viruses on bacterial processes. In: Kirchman DL (ed) Microbial of the Oceans. Wiley-Liss, New York, pp 351–386Google Scholar
  63. Furhman JA, Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Appl Environ Microbiol 39:1085–1095Google Scholar
  64. Gasol JM et al (2008) Towards a better understanding of microbial carbon flux in the sea. Aquat Microb Ecol 53:21–38Google Scholar
  65. Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 72:257–262PubMedCentralPubMedGoogle Scholar
  66. Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175PubMedGoogle Scholar
  67. Gieg LM, Suflita JM (2002) Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol 36:3755–3762PubMedGoogle Scholar
  68. Godfroy A, Raven ND, Sharp RJ (2000) Physiology and continuous culture of the hyperthermophilic deep-sea vent archaeon Pyrococcus abyssi ST549. FEMS Microbiol Lett 186:127–132PubMedGoogle Scholar
  69. Gordon HR, Brown OB, Evans RH, Brown JW, Smith KS, Baker KS, Clark DK (1988) A semi analytical radiance model of ocean color. J Geophys Res 93:10909–10924Google Scholar
  70. Goutx M, Wakeham SG, Lee C, Duflos M, Guigue C, Liu Z, Moriceau B, Sempéré R, Tedetti M, Xue J (2007) Composition and degradation of sinking particles with different settling velocities. Limnol Oceanogr 52:1645–1664Google Scholar
  71. Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou-Peyruse A, Hirschler-Réa A (2008) Metabolism of nalkanes and n-alkenes by anaerobic bacteria: a summary. Org Geochem 39:1197–1203Google Scholar
  72. Grossi V, Yakimov MM, Al Ali B, Tapilatu Y, Cuny P, Goutx M, La Cono V, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol 12:2020–2033PubMedGoogle Scholar
  73. Grundmann GL, Debouzie D (2000) Geostatistical analysis of the distribution of NH4+ and NO2- oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Ecol 34:57–62PubMedGoogle Scholar
  74. Guschin DY, Mobarry BK, Proudnikov D, Stahl DA, Rittmann BE, Mirzabekov AD (1997) Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63:2397–2402PubMedCentralPubMedGoogle Scholar
  75. Hahn MW, Lünsdorf H, Wu Q, Schauer M, Hölfe MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451PubMedCentralPubMedGoogle Scholar
  76. Hanson J, Macalday JL, Harris D, Scow KM (1999) Linking toluene degradation with specific microbial populations in soil. Appl Environ Microbiol 65:5403–5408PubMedCentralPubMedGoogle Scholar
  77. He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL et al (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4:1167–1179PubMedGoogle Scholar
  78. Heckly RJ (1978) Bacterial culture preservation methods. Adv Appl Microbiol 24:1–53PubMedGoogle Scholar
  79. Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM (1995) The cis/trans isomerisation of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30:1041–1051Google Scholar
  80. Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, Pernthaler J (2005) Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71:2303–2309PubMedCentralPubMedGoogle Scholar
  81. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaea molecular- isotopic and phylogenetic evidence. Nature 398:802–805PubMedGoogle Scholar
  82. Honjo S, Manganini SJ, Cole JJ (1982) Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res 29:609–625Google Scholar
  83. Hoppe H-G (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308Google Scholar
  84. Hoppe H-G (1991) Microbial extracellular enzyme activity: a new key parameter in aquatic ecology. In: Chrøst RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 60–83Google Scholar
  85. Horikoshi K (ed) (2011) Extremophiles handbook, vol 1. Springer, TokyoGoogle Scholar
  86. Hubálek Z (2002) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229Google Scholar
  87. Hug LA, Salehi M, Nuin P, Tillier ER, Edwards EA (2011) Design and verification of a pangenome microarray oligonucleotide probe set for Dehalococcoides spp. Appl Environ Microbiol 77:5361–5369PubMedCentralPubMedGoogle Scholar
  88. Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Annu Rev Microbiol 38:487–514PubMedGoogle Scholar
  89. Jannasch HW, Wirsen CO (1973) Deep-sea microorganisms: in situ response to nutrient enrichment. Science 180:641–643PubMedGoogle Scholar
  90. Jannasch HW, Wirsen CO (1977) Retrieval of concentrated and undecompressed microbial populations from the deep sea. Appl Environ Microbiol 33:642–646PubMedCentralPubMedGoogle Scholar
  91. Jannasch HW, Wirsen CO (1984) Variability of pressure adaptation in deep sea bacteria. Arch Microbiol 139:281–288Google Scholar
  92. Jannasch HW, Eimhjellen K, Wirsen CO, Farmanfarmaian A (1971) Microbial degradation of organic matter in the deep sea. Science 171:672–675PubMedGoogle Scholar
  93. Jannasch HW, Wirsen CO, Winget CL (1973) A bacteriological pressure-retaining deep-sea sampler and culture vessel. Deep-Sea Res 20:661–664Google Scholar
  94. Jeffrey SW, Mantoura F, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. In: Jeffrey SW, Montana F, Wright SW (eds) Mongraphs on Oceanographic Methodology. UNESCO Pub, ParisGoogle Scholar
  95. Jeffrey SW, Mantoura F, Wright SW (2005) Phytoplankton pigments in oceanography: guidelines to modern methods. In: Jeffrey SW, Montana F, Wright SW (eds) Mongraphs on Oceanographic Methodology, 2nd edn. UNESCO Pub, ParisGoogle Scholar
  96. Johnsen AR, Winding A, Karlson U, Roslev P (2002) Linking of microorganisms to phenanthrene metabolism in soil by analysis of 13C-labeled cell lipids. Appl Environ Microbiol 68:6106–6113PubMedCentralPubMedGoogle Scholar
  97. Johnstone KI (1969) The isolation and cultivation of single organisms. In: Norris JR, Ribbons DW (eds) Methods in Microbiology, vol 1. Academic, New York, pp 455–471Google Scholar
  98. Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria – an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575PubMedCentralPubMedGoogle Scholar
  99. Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria at the single cell level. Microbes Infect 2:1523–1535PubMedGoogle Scholar
  100. Joux F, Servais P, Naudin J-J, Lebaron P, Oriol L, Courties C (2005) Distribution of picophytoplankton and bacterioplankton along a river plume gradient in the Mediterranean Sea. Vie Milieu 55:197–208Google Scholar
  101. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129PubMedGoogle Scholar
  102. Kato C (2011) Distribution of Piezophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 643–655Google Scholar
  103. Kato C et al (2008) Protein adaptation to high-pressure environments. In: Thomas T, Siddiqui KS (eds) Protein adaptation in extremophiles, Molecular anatomy and physiology of proteins series. Nova Science Publisher, Hauppauge, pp 167–191Google Scholar
  104. Kenters N, Henderson G, Jeyanathan J, Kittelmann S, Janssen PH (2011) Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. J Microbiol Methods 84:52–60PubMedGoogle Scholar
  105. Kirchman DL, K’ness E, Hodson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49:599–607PubMedCentralPubMedGoogle Scholar
  106. Klamer M, Bääth E (1998) Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiol Ecol 27:9–20Google Scholar
  107. Kreil DP, Russel RR, Russel S (2006) Microarray oligonucleotide probes. Methods Enzymol 410:73–98PubMedGoogle Scholar
  108. Koshkin AA, Nielsen P, Meldgaard M, Rajwanshi VK, Singh SK, Wengel J (1998) LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA:LNA duplexes. J Am Chem Soc 120:13252–13253Google Scholar
  109. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959PubMedCentralPubMedGoogle Scholar
  110. Lauro F, Bartlett D (2007) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25PubMedGoogle Scholar
  111. Lauro FM, Tran K, Vezzi A, Vitulo N, Valle G, Bartlett DH (2008) Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J Bacteriol 90:1699–1709Google Scholar
  112. Lazazzera BA (2005) Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol 8:222–227PubMedGoogle Scholar
  113. Lebaron P, Servais P, Agogué H, Courties C, Joux F (2001) Does the nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775–1782PubMedCentralPubMedGoogle Scholar
  114. Lemarchand K, Parthuisot N, Catala P, Lebaron P (2001) Comparative assessment of epifluorescence microscopy, flow cytometry and solid-phase cytometry used in the enumeration of specific bacteria in water. Aquat Microb Ecol 25:301–309Google Scholar
  115. Lenaerts J, Lappin-Scott HM, Porter J (2007) Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry. Appl Environ Microbiol 73:2020–2023PubMedCentralPubMedGoogle Scholar
  116. Liss PS, Duce RA (1997) The sea surface and global change. Cambridge University Press, Cambridge, UKGoogle Scholar
  117. Lohrenzen CJ (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res 13:223–227Google Scholar
  118. Ludwig W et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCentralPubMedGoogle Scholar
  119. Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum Microbiology. ASM Press, Washington, DC, pp 21–33Google Scholar
  120. Martini S, Al Ali B, Garel M, Nerini D, Grossi V, Casalot L, Cuny P, Tamburini C (2013) Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS One 8:e66580PubMedCentralPubMedGoogle Scholar
  121. Mazzella N, Molinet J, Syakti AD, Barriol A, Dodi A, Bertand J-C, Doumenq P (2005) Effects of n-alkanes and crude oil on bacterial phospholipid classes and molecular species determined by electrospray ionization mass spectrometry. J Chromatogr B 822:40–53Google Scholar
  122. Migné A, Davoult D, Spilmont N, Menu D, Boucher G, Gattuso J-P, Rybarczyk H (2002) A closed-chamber CO2-flux method for estimating intertidal primary production and respiration under emersed conditions. Mar Biol 140:865–869Google Scholar
  123. Militon C et al (2007) Phyl Array: phylogenetic probe design algorithm for microarray. Bioinformatics 23:2550–2557PubMedGoogle Scholar
  124. Mitchell D, Willerslev E, Hansen A (2005) Damage and repair of ancient DNA. Mutat Res 571:265–276PubMedGoogle Scholar
  125. Montserrat-Sala M, Arin L, Balagué V, Felipe J, Guadayol Ò, Vaqué D (2005) Functional diversity of bacterioplankton assemblages in western Antarctic seawaters during late spring. Mar Ecol Prog Ser 292:13–21Google Scholar
  126. Nagata T et al (2010) Emerging concepts on microbial processes in the bathypelagic ocean – ecology, biogeochemistry and genomics. Deep Sea Res II 57:1519–1536Google Scholar
  127. Nelson CE, Carlson CA (2005) A nonradioactive assay of bacterial productivity optimized for oligotrophic pelagic environments. Limnol Oceanogr Methods 3:211–220Google Scholar
  128. Neufeld JD, Dumont MG, Vohra J, Murrell JC (2007a) Methodological considerations for the application of stable isotope probing in microbial ecology. Microb Ecol 53:435–442PubMedGoogle Scholar
  129. Neufeld JD, Wagner M, Murrell JC (2007b) Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J 1:103–110PubMedGoogle Scholar
  130. Neveux J, Lantoine F (1993) Spectrofluorometric assay for chlorophylls and phaeopigments using the least squares approximation technique. Deep-Sea Res 40:1747–1765Google Scholar
  131. Nichols PD, Guckert JB, White DC (1986) Determination of monounsaturated fatty acids double bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55Google Scholar
  132. Norland S (1993) The relationship between biomass and volume of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods of aquatic ecology. Lewis Publishers, Boca Raton, pp 303–307Google Scholar
  133. Normand P (1995) Utilisation des séquences 16S pour le positionnement phylétique d’un organisme inconnu. Oceanis 21:31–56Google Scholar
  134. Nyonyo T, Shinkai T, Tajima A, Mitsumori M (2012) Effect of media composition, including gelling agents, on isolation of previously uncultured rumen bacteria. Lett Appl Microbiol 56:63–70PubMedGoogle Scholar
  135. Ogram A, Sun W, Brockman FJ, Fredrickson JK (1995) Isolation and characterization of RNA from low-biomass deep-subsurface sediments. Appl Environ Microbiol 61:763–768PubMedCentralPubMedGoogle Scholar
  136. Onstott TC et al (1997) The deep gold mines of South Africa: Windows into the subsurface biosphere. Proc SPIE Int Soc Opt Eng 3111:344–357Google Scholar
  137. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487PubMedGoogle Scholar
  138. Pancost RD, Sinninghe Damsté JS (2003) Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol 195:29–58Google Scholar
  139. Parisot N, Denonfoux J, Dugat-Bony E, Peyret P, Peyretaillade E (2012) KASpOD–a web service for highly specific and explorative oligonucleotide design. Bioinformatics 28:3161–3162PubMedGoogle Scholar
  140. Pedersen K (2001) Subterranean microorganisms and radioactive waste disposal in Sweden. Eng Geol 59:163–176Google Scholar
  141. Peeva VK, Lynch JL, Desilva CJ, Swanson NR (2008) Evaluation of automated and conventional microarray hybridization – a question of data quality and best practice? Biotechnol Appl Biochem 50:181–190PubMedGoogle Scholar
  142. Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433PubMedCentralPubMedGoogle Scholar
  143. Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484PubMedGoogle Scholar
  144. Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58:2717–2722PubMedCentralPubMedGoogle Scholar
  145. Postec A, Le Breton C, Fardeau ML, Lesongeur F, Pignet P, Querellou J, Ollivier B, Godfroy A (2005a) Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:1217–1221PubMedGoogle Scholar
  146. Postec A, Pignet P, Cueff-Gauchard V, Schmitt A, Querellou J, Godfroy A (2005b) Optimisation of growth conditions for continuous culture of the hyperthermophilic archaeon Thermococcus hydrothermalis and development of sulphur-free defined and minimal media. Res Microbiol 156:82–87PubMedGoogle Scholar
  147. Postec A, Urios L, Lesongeur F, Ollivier B, Querellou J, Godfroy A (2005c) Continuous enrichment culture and molecular monitoring to investigate the microbial diversity of thermophiles inhabiting deep-sea hydrothermal ecosystems. Curr Microbiol 50:138–144PubMedGoogle Scholar
  148. Postec A, Lesongeur F, Pignet P, Ollivier B, Querellou J, Godfroy A (2007) Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys. Extremophiles 11:747–757PubMedGoogle Scholar
  149. Pozhitkov A, Noble PA, Domazet-Loso T, Nolte AW, Sonnenberg R, Staehler P et al (2006) Tests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted. Nucleic Acids Res 34:e66PubMedCentralPubMedGoogle Scholar
  150. Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles: a critique. FEMS Microbiol Ecol 42:1–14, 869PubMedGoogle Scholar
  151. Pringault O, Tassas V, Rochelle-Newall E (2007) Consequences of light respiration on the determination of production in pelagic systems. Biogeosciences 4:105–114Google Scholar
  152. Ranjard L, Richaume A, Jocteur-Monrozier L, Nazaret S (1997) Response of soil bacteria to Hg(II) in relation to soil characteristics and cell location. FEMS Microbiol Ecol 24:321–331Google Scholar
  153. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedGoogle Scholar
  154. Rappé S, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633PubMedGoogle Scholar
  155. Raven N, Ladwa N, Cossar D, Sharp R (1992) Continuous culture of the hyperthermophilic archaeum Pyrococcus furiosus. Appl Microbiol Biotechnol 38:263–267Google Scholar
  156. Richard FA, Thompson TG (1952) The estimation and characterization of plankton by pigments analyses. II. A spectrophotometric method for the estimation of plankton pigments. J Mar Res 21:155–172Google Scholar
  157. Rimour S, Hill D, Militon C, Peyret P (2005) Go Arrays: highly dynamic and efficient microarray probe design. Bioinformatics 21:1094–1103PubMedGoogle Scholar
  158. Robinson C, Williams PJ leB (1999) Plankton net community production and dark respiration in the Arabian Sea during September 1994. Deep-Sea Res part II 46:745–765Google Scholar
  159. Robinson C et al (2010) Mesopelagic ecology and biogeochemistry – a synthesis. Deep-Sea Res II 57:1504–1518Google Scholar
  160. Roland F, Caraco NF, Cole JJ, del Giorgio P (1999) Rapid and precise determination of dissolved oxygen by spectrophotometry: evaluation of interference from color and turbidity. Limnol Oceanogr 44:1148–1154Google Scholar
  161. Rowe GT, Deming JW (2011) An alternative view of the role of heterotrophic microbes in the cycling of organic matter in deep-sea sediments. Mar Biol Res 7:629–636Google Scholar
  162. Ryther JH, Yentsch CS (1957) The estimation of phytoplankton, production in the ocean from chlorophyll and light data. Limnol Oceanogr 2:281–286Google Scholar
  163. Saiki RK et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedGoogle Scholar
  164. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467PubMedCentralPubMedGoogle Scholar
  165. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedGoogle Scholar
  166. Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 16:301–306PubMedGoogle Scholar
  167. Scholten JC, Culley DE, Nie L, Munn KJ, Chow L, Brockman FJ, Zhang W (2007) Development and assessment of whole-genome oligonucleotide microarrays to analyze an anaerobic microbial community and its responses to oxidative stress. Biochem Biophys Res Commun 358:571–577PubMedGoogle Scholar
  168. Sebat JL, Colwell FS, Crawford RL (2003) Metagenomic profiling: microarray analysis of an environmental genomic library. Appl Environ Microbiol 69:4927–4934PubMedCentralPubMedGoogle Scholar
  169. Sizova MV, Hohmann T, Hazen A, Paster BJ, Halem SR, Murphy CM, Panikov NS, Epsteina SS (2012) New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol 78:194–203PubMedCentralPubMedGoogle Scholar
  170. Slawyk G, Raimbault P (1995) A simple procedure for the simultaneous recovery of dissolved inorganic and organic nitrogen in 15N-tracer experiments on oceanic waters improving the mass balance. Mar Ecol Prog Ser 124:289–299Google Scholar
  171. Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114Google Scholar
  172. Smith DC, Simon M, Alldredge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142Google Scholar
  173. Spring S, Schulze R, Overmann J, Schleifer K-H (2000) Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol Rev 24:573–590PubMedGoogle Scholar
  174. Stanley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346Google Scholar
  175. Steemann Nielsen E (1951) Measurement of the production of organic matter in the Sea. Nature 167:684Google Scholar
  176. Stender H, Lund K, Petersen KH, Rasmussen OF, Hongmanee P, Miorner H, Godtfredsen SE (1999) Fluorescence In situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures. J Clin Microbiol 37:2760–2765PubMedCentralPubMedGoogle Scholar
  177. Steward GF, Fandino LB, Hollibaugh JT, Whitledge TE, Azam F (2007) Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean. Deep-Sea Res I 54:1744–1757Google Scholar
  178. Stingl U, Tripp HJ, Giovannoni SJ (2007) Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Times Series study site. Int Soc Microbiol Ecol 1:361–371Google Scholar
  179. Stramski D et al (2008) Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic oceans. Biogeosciences 5:171–201Google Scholar
  180. Strickland JDH (1960) Measuring the production of marine phytoplankton. Bull Fish Res Bd Can 122:1–172Google Scholar
  181. Strom SL (2000) Bacterivory: interactions between bacteria and their grazers. In: Kirchman DL (ed) Microbial of the oceans. Wiley-Liss, New York, pp 351–386Google Scholar
  182. Syakti AD, Mazzella N, Torre F, Acquaviva M, Gilewicz M, Guiliano M, Bertrand J-C, Doumenq P (2006) Influence of growth phase on the phospholipidic fatty acid composition of two marine bacterial strains in pure and mixed cultures. Res Microbiol 157:479–486PubMedGoogle Scholar
  183. Tabor P, Colwell RR (1976) Initial investigation with a deep ocean in situ sampler. In: Proceedings of the MTS/IEEE OCEANS’76. IEEE, Washington, DC, pp 13D-11–13D-14Google Scholar
  184. Talbot V, Bianchi M (1995) Utilisation d’un substrat modèle fluorogène pour mesurer l’activité enzymatique extracellulaire (AEE) bactérienne. Oceanis 21:247–260Google Scholar
  185. Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:2162–2169PubMedCentralPubMedGoogle Scholar
  186. Tamburini C, Garcin J, Bianchi A (2003) Role of deep-sea bacteria in organic matter mineralization and adaptation to hydrostatic pressure conditions in the NW Mediterranean Sea. Aquat Microb Ecol 32:209–218Google Scholar
  187. Tamburini C, Garcin J, Grégori G, Leblanc K, Rimmelin P, Kirchman DL (2006) Pressure effects on surface Mediterranean prokaryotes and biogenic silica dissolution during a diatom sinking experiment. Aquat Microb Ecol 43:267–276Google Scholar
  188. Tamburini C et al (2009) Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res II 56:1533–1546Google Scholar
  189. Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW (2013) Prokaryotic responses to hydrostatic pressure in the ocean – a review. Environ Microbiol 15:1262–1274PubMedGoogle Scholar
  190. Tanaka Y, Hanada S, Manome A, Tsuchida T, Kurane R, Nakamura K, Kamagata Y (2004) Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. Int J Syst Evol Microbiol 54:955–959PubMedGoogle Scholar
  191. Tang JW, Baldocchi DD, Qi Y, Xu LK (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 118:207–220Google Scholar
  192. Tang J-C, Kanamori T, Inoue Y, Yasuta T, Yoshida S, Katayama A (2004) Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method. Process Biochem 39:1999–2006Google Scholar
  193. Terrat S, Peyretaillade E, Goncalves O, Dugat-Bony E, Gravelat F, Mone A et al (2010) Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development. BMC Bioinformatics 11:478PubMedCentralPubMedGoogle Scholar
  194. Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W (1999) Highly isotopically depleted isoprenoids: Molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966Google Scholar
  195. Tholosan O, Garcin J, Bianchi A (1999) Effects of hydrostatic pressure on microbial activity through a 2000 m deep water column in the NW Mediterranean Sea. Mar Ecol Prog Ser 183:49–57Google Scholar
  196. Timlin JA (2006) Scanning microarrays: current methods and future directions. Methods Enzymol 411:79–98PubMedGoogle Scholar
  197. Turley CM (1993) The effect of pressure on leucine and thymidine incorporation by free-living bacteria and by bacteria attached to sinking oceanic particles. Deep-Sea Res I 40:2193–2206Google Scholar
  198. Turley CM, Mackie PJ (1994) Biogeochemical significance of attached and free-living bacteria and the flux of particles in the NE Atlantic Ocean. Mar Ecol Prog Ser 115:191–203Google Scholar
  199. Turley CM, Mackie PJ (1995) Bacterial and cyanobacterial flux to the deep NE Atlantic on sedimenting particles. Deep-Sea Res I 42:1453–1474Google Scholar
  200. Turley CM, Lochte K, Lampitt RS (1995) Transformation of biogenic particles during sedimentation in the northeastern Atlantic. Philos Trans R Soc Lond B Biol Sci 348:179–189Google Scholar
  201. Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedCentralPubMedGoogle Scholar
  202. Uitz J, Claustre H, Morel A, Hooker S (2006) Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J Geophys Res 111:C08005. doi: 10.1029/2005JC003207 Google Scholar
  203. UNESCO (1966) Determination of photosynthetic pigments in seawater. UNESCO Monographs on oceanograph methodology. UNESCO, ParisGoogle Scholar
  204. Van der Meer MTJ, Schouten S, Sinninghe Damsté JS (1998) The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipids. Org Geochem 28:527–533Google Scholar
  205. Van der Meer MTJ et al (2001) Biosynthetic controls on the 13C contents of organic components in the photoautotrophic bacterium Chloroflexus aurantiacus. J Biol Chem 276:10971–10976PubMedGoogle Scholar
  206. Vaqué D, Gasol JM, Marasse C (1994) Grazing rates on bacteria: The significance of methodology and ecological factors. Mar Ecol Prog Ser 109:263–274Google Scholar
  207. Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43:13233–13241PubMedGoogle Scholar
  208. Von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229Google Scholar
  209. Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429PubMedGoogle Scholar
  210. Wakeham SG, Lee C (1993) Production, transport, and alteration of particulate organic matter in the marine water column. In: Engel M, Macko S (eds) Organic geochemistry. Plenum Press, New York, pp 145–169Google Scholar
  211. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCentralPubMedGoogle Scholar
  212. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181PubMedGoogle Scholar
  213. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583PubMedCentralPubMedGoogle Scholar
  214. Witte U, Wenzhofer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham WR, Jorgensen BB, Pfannkuche O (2003) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766PubMedGoogle Scholar
  215. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedCentralPubMedGoogle Scholar
  216. Wolber PK, Collins PJ, Lucas AB, De Witte A, Shannon KW (2006) The Agilent in situ-synthesized microarray platform. Methods Enzymol 410:28–57PubMedGoogle Scholar
  217. Wu L, Thompson DK, Liu X, Fields MW, Bagwell CE, Tiedje JM, Zhou J (2004) Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol 38:6775–6782PubMedGoogle Scholar
  218. Yasumoto-Hirose M, Nishijima M, Ngirchechol MK, Kanoh K, Shizuri Y, Miki W (2006) Isolation of marine bacteria by in situ culture on media-supplemented polyurethane foam. Mar Biotechnol 8:227–237PubMedGoogle Scholar
  219. Yayanos AA (1995) Microbiology to 10,500 meters in the deep-sea. Annu Rev Microbiol 49:777–805PubMedGoogle Scholar
  220. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res 10:221–231Google Scholar
  221. Young LY, Phelps CD (2005) Metabolic biomarker for monitoring in situ anaerobic hydrocarbon degradation. Environ Health Perspect 113:62–67PubMedCentralPubMedGoogle Scholar
  222. Zak J, Willig M, Moorhead D, Wildman H (1994) Functional diversity of microbial communities : a quantitative approach. Soil Biol Biochem 26:1101–1108Google Scholar
  223. Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99:15681–15686PubMedCentralPubMedGoogle Scholar
  224. ZoBell CE (1970) Pressure effects on morphology and life processes of bacteria. In: Zimmerman HM (ed) High pressure effects on cellular processes. Academic, New York, pp 85–130Google Scholar
  225. ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Fabien Joux
    • 1
    Email author
  • Jean-Claude Bertrand
    • 2
  • Rutger De Wit
    • 3
  • Vincent Grossi
    • 4
  • Laurent Intertaglia
    • 5
  • Philippe Lebaron
    • 6
  • Valérie Michotey
    • 2
  • Philippe Normand
    • 7
  • Pierre Peyret
    • 8
  • Patrick Raimbault
    • 2
  • Christian Tamburini
    • 2
  • Laurent Urios
    • 9
  1. 1.Laboratoire d’Océanographie Microbienne (LOMIC)UMR 7621 CNRS-UPMC, Observatoire Océanologique de BanyulsBanyuls-sur-MerFrance
  2. 2.Institut Méditerranéen d’Océanologie (MIO)UM 110, CNRS 7294 IRD 235, Université de Toulon, Aix-Marseille UniversitéMarseille Cedex 9France
  3. 3.Écologie des systèmes marins côtiers (ECOSYM, UMR5119)Universités Montpellier 2 et 1, CNRS-Ifremer-IRDMontpellier Cedex 05France
  4. 4.Laboratoire de Géologie de Lyon: Terre, Planètes, EnvironnementUMR CNRS 5276, Université Claude Bernard Lyon 1Villeurbanne CedexFrance
  5. 5.Observatoire Océanologique de Banyuls sur Mer UPMC/CNRS – UMS 2348, Plateforme BIO2MARBanyuls-sur-MerFrance
  6. 6.Observatoire Océanologique de Banyuls, Laboratoire de Biodiversité et Biotechnologie Microbiennes (LBBM)Sorbonne Universités, UPMC Univ Paris 06, USR CNRS 3579Banyuls-sur-MerFrance
  7. 7.Microbial Ecology CenterUMR CNRS 5557 / USC INRA 1364, Université Lyon 1VilleurbanneFrance
  8. 8.EA CIDAM 4678, CBRV, Université d’AuvergneClermont-FerrandFrance
  9. 9.Institut des Sciences Analytiques et de Physico-chimie pour l’Environnement et les Matériaux (IPREM)UMR CNRS 5254, Université de Pau et des Pays de l’AdourPau CedexFrance

Personalised recommendations