Biogeochemical Cycles

  • Jean-Claude Bertrand
  • Patricia Bonin
  • Pierre Caumette
  • Jean-Pierre Gattuso
  • Gérald Grégori
  • Rémy Guyoneaud
  • Xavier Le Roux
  • Robert Matheron
  • Franck Poly


All living organisms contribute to the biogeochemical cycles, but microorganisms, due to their high abundance, their tremendous metabolic capacities and adaptation potential, play a key role in the functioning and the evolution of biogeochemical cycles. Consequently, they are keyplayers in adaptation, resistance and resilience of ecosystems. The role of microorganisms in the main biogeochemical cycles (carbon, nitrogen, sulfur, phosphorus, silicon, metals), in soils, freshwater and marine ecosystems is presented. Microbial processes involved in the turnover of biogeochemical cycles are discussed from gene to ecosystem (natural and anthropogenic ecosystems), at global, regional and local scales, as well as in targeted microenvironments (such as particles or microniches). The biodiversity of microorganisms is highlighted and their metabolic pathways on which are based exchanges and biotransformations of organic and mineral components within ecosystems are described in details. The impacts of human activities on the microbial actors and processes of biogeochemical cycles, and the cascading ecological effects (greenhouse gas emissions, acid rains, dystrophic crises, etc.), are also discussed.


Anoxic zones Biogeochemical cycles Carbon cycle Ecosystem functioning Iron cycle Lake ecosystems Manganese cycle Marine ecosystems Mercury cycle Microbial functions Nitrogen cycle Oxic zones Phosphate cycle Silicon cycle Soils Sulfur cycle 


  1. Aller RC (1994) Bioturbation and remineralisation of sedimentary organic matter: effects of redox oscillation. Chem Geol 114:331–345Google Scholar
  2. Amblard C, Boisson J-C, Fontvielle D, Gayte X, Sime-Ngando T (1998) Microbial ecology in aquatic systems: a review from viruses to protozoa. Rev Sci Eau N° Special: 145–162Google Scholar
  3. An SM, Gardner WS, Kana T (2001) Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Appl Environ Microbiol 67:1171–1178PubMedCentralPubMedGoogle Scholar
  4. Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180PubMedCentralPubMedGoogle Scholar
  5. Azam F, Fenchel T, Gray JG, Meyer-Reil LA, Thingstad TF (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263Google Scholar
  6. Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326:891–892PubMedGoogle Scholar
  7. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384PubMedGoogle Scholar
  8. Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300Google Scholar
  9. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev 2:217–230Google Scholar
  10. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187PubMedGoogle Scholar
  11. Beatty JT et al (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102:9306–9310PubMedCentralPubMedGoogle Scholar
  12. Beauchamp B (2004) Natural gas hydrates: myths, facts and issues. C R Geosci 336:751–765Google Scholar
  13. Benitez-Nelson CR (2000) The biogeochemical cycling of phosphorus in marine systems. Earth Sci Rev 51:109–135Google Scholar
  14. Berelson WM, Balch WM, Najjar R, Feely RA, Sabine C, Lee K (2007) Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget. Glob Biogeochem Cycles 21, GB1024Google Scholar
  15. Bernalier A, Rochet V, Leclerc M, Doré J, Pochart P (1996) Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans. Curr Microbiol 33:94–99PubMedGoogle Scholar
  16. Berner RA (2004) The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, OxfordGoogle Scholar
  17. Blain S et al (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–1075PubMedGoogle Scholar
  18. Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA 101:11111–11116PubMedCentralPubMedGoogle Scholar
  19. Boetius A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626PubMedGoogle Scholar
  20. Bond JH, Engel RR, Levitt MD (1971) Factors influencing pulmonary methane excretion in man. An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J Exp Med 133:572–588PubMedCentralPubMedGoogle Scholar
  21. Bonin P, Gilewicz M (1992) A direct demonstration of “co-respiration” of oxygen and nitrogen oxides by Pseudomonas nautica. FEMS Microbiol Lett 80:183–188Google Scholar
  22. Bonin P, Omnes P, Chamalet A (1998) Simultaneous occurence of denitrification and nitrate ammonification in sediments of French Mediterranean Coast. Hydrobiologia 389:169–182Google Scholar
  23. Boyd PW et al (2007) Synthesis and future directions. Science 315:612–617PubMedGoogle Scholar
  24. Brauman A, Fonty G, Roger P (2008) La Méthanisation. Éditions Tech & Doc-Lavoisier, ParisGoogle Scholar
  25. Bruland K et al (1979) Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at the nanogram per liter level in sea water. Anal Chim Acta 105:223–245Google Scholar
  26. Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21Google Scholar
  27. Buffet BA (2000) Clathrates hydrates. Annu Rev Earth Planet Sci 28:477–507Google Scholar
  28. Butler A (1998) Acquisition and utilization of transition metals ions by marine organisms. Science 281:207–210PubMedGoogle Scholar
  29. Caumette P (1986) Phototrophic sulfur bacteria and sulfatereducing bacteria causing red waters in a shallow brackish coastal lagoon (Prevost Lagoon, France). FEMS Microbiol Ecol 38:113–124Google Scholar
  30. Chapin FS (2002) Principles of terrestrial ecosystem ecology. Springer, New YorkGoogle Scholar
  31. Chisholm SW (2000) Oceanography – stirring times in the Southern Ocean. Nature 407:685–687PubMedGoogle Scholar
  32. Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343Google Scholar
  33. Chistoserdova L, Vorholt JA, Lidstrom ME (2005) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6:208PubMedCentralPubMedGoogle Scholar
  34. Chivan D et al (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278Google Scholar
  35. Christl SU, Murgatroyd PR, Gibson GR, Cummings JH (1992) Production, metabolism and excretion of H2 in the large intestine. Gastroenterology 102:1269–1277PubMedGoogle Scholar
  36. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458Google Scholar
  37. Coates JD, Councell T, Ellis DJ, Lovley DR (1998) Carbohydrate oxidation coupled to Fe (III) reduction, a novel form of anaerobic metabolism. Anaerobe 4:277–282PubMedGoogle Scholar
  38. Cohen Y, Jørgensen BB, Padan E, Shilo M (1975) Sulfide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:486–492Google Scholar
  39. Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502PubMedCentralPubMedGoogle Scholar
  40. Crolet JL (1992) From biology and corrosion to biocorrosion. Oceanol Acta 15:87–94Google Scholar
  41. Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848PubMedGoogle Scholar
  42. Damste JSS et al (2002) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708–712Google Scholar
  43. Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65:133–144PubMedGoogle Scholar
  44. Daumas S, Magot M, Crolet JL (1993) Measurement of the net production of acidity by a sulphate-reducing bacterium: experimental checking of theoretical models of microbially influenced corrosion. Res Microbiol 144:327–332PubMedGoogle Scholar
  45. De Bona FD, Bayer C, Dieckow J, Bergamaschi H (2008) Soil quality assessed by carbon management index in a subtropical acrisol subjected to tillage systems and irrigation. Aust J Soil Res 46:469–475Google Scholar
  46. de Wit R, van Gemerden H (1990) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154:459–464Google Scholar
  47. Del Amo Y, Quéguiner B, Tréguer P, Breton H, Lampert L (1997) Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. II. Specific role of the silicic acid pump in the year-round dominance of diatoms in the Bay of Brest (France). Mar Ecol Prog Ser 161:225–237Google Scholar
  48. del Giorgio PA, Williams PJB (2005) The global significance of respiration in aquatic ecosystems: from single cells to the biosphere. In: del Giorgio PA, Williams PJB (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 267–303Google Scholar
  49. Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167PubMedGoogle Scholar
  50. Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189PubMedGoogle Scholar
  51. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis, gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907PubMedGoogle Scholar
  52. Duhamel S, Björkman KM, van Wambeke F, Moutin T, Karl DM (2011) Characterization of alkaline phosphatase activity in the North and South pacific subtropical gyres: implications for phosphorus cycling. Limnol Oceanogr 56:1244–1254Google Scholar
  53. Dyhrman ST, Ammermann JW, Van Mooy BA (2007) Microbes and marine phosphorus cycle. Oceanography 20:110–116Google Scholar
  54. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCentralPubMedGoogle Scholar
  55. Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. App Environ Microbiol 60:4517–4526Google Scholar
  56. Ehrlich HL (2002) Geomicrobiology. Marcel Dekker, New YorkGoogle Scholar
  57. Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulphate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419Google Scholar
  58. Ettwig KF et al (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173PubMedGoogle Scholar
  59. Ettwig KF et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548PubMedGoogle Scholar
  60. Farenhorst A (2006) Importance of soil organic matter fractions in soil-landscape and regional assessments of pesticide sorption and leaching in soil. Soil Sci 70:1005–1012Google Scholar
  61. Farina M, Esquivel DMS, Lins de Bzarros HGP (1990) Magnetic iron-sulfur crystals from a magnetotactil microorganism. Nature 343:256–258Google Scholar
  62. Fay P (1992) Oxygen relations of nitrogen-fixation in cyanobacteria. Microbiol Rev 56:340–373PubMedCentralPubMedGoogle Scholar
  63. Féron D, Compère C, Dupont I, Magot M (2002) Biodétérioration des matériaux métalliques ou biocorrosion. In Béranger G, et Mazille H (eds) Corrosion des métaux et alliages. Lavoisier, Paris, pp 385–405Google Scholar
  64. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240PubMedGoogle Scholar
  65. Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediment and iron-reducing bacterium. Appl Environ Microbiol 64:457–464Google Scholar
  66. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843Google Scholar
  67. Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320Google Scholar
  68. Forshay KJ, Stanley EH (2005) Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry 75:43–64Google Scholar
  69. Fossing H, Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: evaluation of single step chromium reduction method. Biogeochemistry 8:205–222Google Scholar
  70. Francis CA, Co EM, Tebo BM (2001) Enzymaticmanganese(II) oxidation by a marine alpha-proteobacterium. Appl Environ Microbiol 67:4024–4029PubMedCentralPubMedGoogle Scholar
  71. Frontier S, et Pichot-Viale D (1998) Ecosystèmes: Structure,fonctionnement, évolution, 2e édition. Dunod, ParisGoogle Scholar
  72. Fung I, John J, Lerner J, Matthews E, Prather M, Steele LP, Fraser PJ (1991) Three-dimensional model synthesis of the global methane cycle. J Phys Res 96(D7):13033–13065Google Scholar
  73. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356Google Scholar
  74. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390PubMedGoogle Scholar
  75. Garcia J-L, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226PubMedGoogle Scholar
  76. Gilbert F, Bonin P, Stora G (1995) Effect of bioturbation on denitrification in a marine sediment from the West Mediterranean littoral. Hydrobiologia 304:49–58Google Scholar
  77. Goevert D, Conrad R (2009) Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorans and in rice field soil. Appl Environ Microbiol 75:2605–2612PubMedCentralPubMedGoogle Scholar
  78. Graham JW, Cooper SC (1959) Biological origin of manganese-rich deposits of the sea floor. Nature 183:1050–1051Google Scholar
  79. Grossi V, Cuny P, Caradec S, Nerini D, Pancost R, Gilbert F (2006) Impact of feeding by Arenicola marina (L.) and ageing of faecal material on fatty acid distribution and bacterial community structure in marine sediments: an expérimental approach. J Exp Mar Biol Ecol 336:54–64Google Scholar
  80. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedCentralPubMedGoogle Scholar
  81. Haroon MF et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570PubMedGoogle Scholar
  82. Hauck RD, Bouldin DR (1961) Distribution of isotopic nitrogen gas during denitrification. Nature 191:871–872Google Scholar
  83. Hegler F, Popsth NR, Jiang J, Kappler A (2008) Physiology of phototrophic iron (II)-oxidizing bacteria: implications for modern and ancient environments. FEMS Microbiol Ecol 66:250–260PubMedGoogle Scholar
  84. Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590PubMedGoogle Scholar
  85. Hernesmaa A, Bjorklof K, Kiikkila O, Fritze H, Haahtela K, Romantschuk M (2005) Structure and function of microbial communities in the rhizosphere of Scots pine after tree-felling. Soil Biol Biochem 37:777–785Google Scholar
  86. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, De Long EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805PubMedGoogle Scholar
  87. Hinrichs K-U, Summons RE, Orphan V, Sylva SP, Jayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701Google Scholar
  88. Hoeler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycle 8:451–463Google Scholar
  89. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2004) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  90. Hu S, Zeng RJ, Burow LC, Lant P, Keller J, Yuan Z (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep 1:377–384PubMedGoogle Scholar
  91. Hutsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition – an important source for carbon turnover in soils. J Plant Nut Soil Sci 165:397–407Google Scholar
  92. IPCC (1995) Greenhouse gas inventory reference manual. IPCC Guidelines for National Greenhouse Gas Inventories. United Nations Environment Programme (UNEP), the Organisation for Economic Co-operation and Development (OECD), the International Energy Agency (IEA) and the Intergovernmental Panel on Climate Change (IPCC), BracknellGoogle Scholar
  93. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report IPCC. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds). Cambridge University Press, Cambridge/New YorkGoogle Scholar
  94. Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71:3355–3358PubMedCentralPubMedGoogle Scholar
  95. Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725PubMedGoogle Scholar
  96. Jetten MS, Logemann S, Muyzer G, Robertson LA, de Vries S, van Loosdrecht MC, Kuenen JG (1997) Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek 71:75–93PubMedGoogle Scholar
  97. Jickells T et al (2005) Global iron connections between desert dust, ocean oiogeochemistry, and climate knowledge. Science 303:67–71Google Scholar
  98. Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment. Limnol Oceanogr 22:817–832Google Scholar
  99. Jørgensen BB (1983) The microbial sulphur cycle. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific Publication, Oxford, pp 91–124Google Scholar
  100. Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154PubMedGoogle Scholar
  101. Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin/Heidelberg/New York, pp 173–207Google Scholar
  102. Jørgensen BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24:189–201Google Scholar
  103. Karl DM (2002) Microbiological oceanography – hidden in a sea of microbes. Nature 415:590–591PubMedGoogle Scholar
  104. Karl DM (2007) The marine phosphorus cycle. In: Hurst CJ et al (eds) Manual of environmental microbiology, 3rd edn. American Society of Microbiology, Washington, DC, pp 523–539Google Scholar
  105. Karl DM, Tilbrook BD (1994) Production and transport of methane in oceanic particulate organic matter. Nature 368:732–734Google Scholar
  106. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334PubMedGoogle Scholar
  107. Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic Archaea at cold seeps. Appl Environ Microbiol 71:467–479PubMedCentralPubMedGoogle Scholar
  108. Koide K, Osono T, Takeda H (2005) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609Google Scholar
  109. Küsel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the réduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65:3633–3640PubMedCentralPubMedGoogle Scholar
  110. Kvenvolden KA, Rogers B (2005) Gaia’s breathglobal methane exhallations. Mar Petrol Geol 22:579–590Google Scholar
  111. Laughlin RJ, Stevens RJ (2002) Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci 66:1540–1548Google Scholar
  112. Lavelle P (2002) Functional domains in soils. Ecol Res 17:441–450Google Scholar
  113. Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic, Dordrecht/Boston/LondonGoogle Scholar
  114. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  115. Lehours A-C, Carrias J-F, Amblard C, Sime-Ngando T, Fonty G (2010) les bactéries du Lac Pavin. Pour la Science 387:30–35Google Scholar
  116. Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B:128–150Google Scholar
  117. Lemaitre C, Pébère N, Festy D (1994) Biodétérioration des matériaux. EDP Sciences, Les UlisGoogle Scholar
  118. Lomans BP, van der Drift C, Pol A, Op den Camp HJM (2002) Microbial cycling of volatile organic sulfur compounds. Cell Mol Life Sci 59:575–588PubMedGoogle Scholar
  119. Lovley DR (1991) Dissimilatory Fe(III) and Mn (IV) reduction. Microbiol Rev 55:259–287PubMedCentralPubMedGoogle Scholar
  120. Lovley DR (2006) Dissimilatory Fe(III)- and Mn(IV)- reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 635–658Google Scholar
  121. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(Iv) reduction. Adv Microbiol Physiol 49:219–286Google Scholar
  122. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCentralPubMedGoogle Scholar
  123. Macdonald GJ (1990) Role of methane clathrates in past and future climates. Clim Change 16:247–281Google Scholar
  124. Macfarlane GT, Gibson GR (1994) Metabolic activities of the normal colonic flora. In: Gibson SAW (ed) Human health. The contribution of microorganisms. Springer, London, pp 17–52Google Scholar
  125. Madsen EL (2011) Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol 22:456–464PubMedGoogle Scholar
  126. Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic, San DiegoGoogle Scholar
  127. Majeed MZ et al (2013) Emissions of nitrous oxide from casts of tropical earthworms belonging to different ecological categories. Pedobiologia 56:49–58Google Scholar
  128. Marland G, Boden TA, Andres RJ (2003) Global, regional, and national CO2 emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak RidgeGoogle Scholar
  129. Martinez RJ, Mills HJ, Story S, Sobecky PA (2006) Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol 8:1783–1796PubMedGoogle Scholar
  130. Master Y, Shavit U, Shaviv A (2005) Modified isotope pairing technique to study N transformations in polluted aquatic systems: theory. Environ Sci Technol 39:1749–1756PubMedGoogle Scholar
  131. Michaelis W et al (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015PubMedGoogle Scholar
  132. Miller TL, Wolin MJ (1986) Methanogens in human and animal intestinal tracts. Syst Appl Microbiol 7:223–229Google Scholar
  133. Mills MMC, Ridame MT, Davey J, La Roche R, Geider J (2005) Iron and phophorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 435:292–294Google Scholar
  134. Milucka J et al (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546PubMedGoogle Scholar
  135. Minjeaud L, Bonin PC, Michotey VD (2008) Nitrogen fluxes from marine sediments: quantification of the associated co-occurring bacterial processes. Biogeochemistry 90:141–157Google Scholar
  136. Mitchell P (1961) Coupling of phosphorylation to électron and hydrogen transfer by chemi-osmotic type of mechanism. Nature 191:144–148PubMedGoogle Scholar
  137. Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10:162–173PubMedGoogle Scholar
  138. Morel A, Gentili B, Claustre H, Babin M, Bricaud A, Ras J, Tieche F (2007) Optical properties of the “clearest” natural waters. Limnol Oceanogr 52:217–229Google Scholar
  139. Morel FMM, Kustka AB, Shaked Y (2008) The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol Oceanogr 53:400–404Google Scholar
  140. Moutin T (2000) Cycle biogéochimique du phosphate: rôle dans le contrôle de la production planctonique et conséquences sur l’exportation de carbone de la couche éclairée vers l’océan profond. Océanis 36:643–660Google Scholar
  141. Moutin T, Karl DM, Duhamel S, Rimmelin P, Raimbault P, van Mooy BAS, Claustre H (2008) Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences 5:95–109Google Scholar
  142. Moutin T, van Wambeke F, Prieur L (2012) Introduction to the biogeochemistry from the oligotrophic to the ultraoligotrophic mediterranean (BOUM) experiment. Biogeosciences 9:3817–3825Google Scholar
  143. Mulder A, Vandegraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol 16:177–183Google Scholar
  144. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulphate. Environ Microbiol 9:187–196PubMedGoogle Scholar
  145. Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approches to carbon cycling. Appl Environ Microbiol 58:439–443PubMedCentralPubMedGoogle Scholar
  146. Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212PubMedGoogle Scholar
  147. Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol Ecol 86:357–362Google Scholar
  148. Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38PubMedCentralPubMedGoogle Scholar
  149. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944PubMedGoogle Scholar
  150. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487PubMedGoogle Scholar
  151. Overmann J, Garcia-Pichel F (2006) The phototrophic way of life. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 32–85Google Scholar
  152. Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155Google Scholar
  153. Pancost RD, Sinninghe Damsté JS (2003) Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol 195:29–58Google Scholar
  154. Parkin TB, Brock TD (1981) The role of phototrophic bacteria in the sulfur cycle of a meromictic lake. Limnol Oceanogr 26:880–890Google Scholar
  155. Parks JM et al (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335PubMedGoogle Scholar
  156. Parsons TR, Takahashi M, Hargrave BT (1984) Biological oceanographic processes. Pergamon Press, OxfordGoogle Scholar
  157. Pedersen H, Dunkin KA, Firestone MK (2002) The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques. Biogeochemistry 44:135–150Google Scholar
  158. Petermann H, Bleil U (1993) Detection of live magnetotactile bacteria in South Atlantic deep-see sediments. Earth Planet Sci Lett 117:223–228Google Scholar
  159. Pfennig N (1975) The phototrophic bacteria and their role in sulfur cycle. Plant and Soil 43:1–16Google Scholar
  160. Pfennig N (1989) Metabolic diversity among the dissimilatory sulfate-reducing bacteria – Albert Jan Kluyver memorial lecture. Ant Leeuw Int J G 56:127–138Google Scholar
  161. Prentice IC et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton J, Ding Y, Griggs DJ, Noguer N, van der Linden PJ, Dai X (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 183–239Google Scholar
  162. Raghoebarsing AA et al (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921PubMedGoogle Scholar
  163. Ranchou-Peyruse M, Monperrus M, Bridou R, Duran R, Amouroux D, Salvado JC, Guyoneaud R (2009) Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers : implications for environmental studies. Geomicrobiol J 26:1–8Google Scholar
  164. Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 177–192Google Scholar
  165. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513PubMedGoogle Scholar
  166. Risgaard-Petersen N (2003) Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: on the influence of benthic microalgae. Limnol Oceanogr 48:93–105Google Scholar
  167. Robertson LA, Kuenen JG (2006) The colorless sulfur bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 985–1011Google Scholar
  168. Roesch LF et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedCentralPubMedGoogle Scholar
  169. Ruiz-Rueda O, Hallin S, Baneras L (2009) Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol Ecol 67:308–319PubMedGoogle Scholar
  170. Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA 104:10643–10648PubMedCentralPubMedGoogle Scholar
  171. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, PrincetonGoogle Scholar
  172. Satoh H, Nakamura Y, Okabe S (2007) Influences of infaunal burrows on the community structure and activity of ammonia-oxidizing bacteria in intertidal sediments. Appl Environ Microbiol 73:1341–1348PubMedCentralPubMedGoogle Scholar
  173. Schauss K et al (2009) Dynamics and functional relevance of ammonia-oxidizing Archaea in two agricultural soils. Environ Microbiol 11:446–456PubMedGoogle Scholar
  174. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. Plos Comput Biol 2:786–793Google Scholar
  175. Schmidt I, van Spanning RJ, Jetten MS (2004) Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 150:4107–4114PubMedGoogle Scholar
  176. Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23(6):1256–1263Google Scholar
  177. Straub KL, Benz B, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460PubMedCentralPubMedGoogle Scholar
  178. Straub KL, Schönhuber WA, Buchholz-Cleven BEE, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21:371–378Google Scholar
  179. Strong A, Chisholm S, Miller C, Cullen J (2009) Iron fertilization: time to move on. Nature 461:347–348PubMedGoogle Scholar
  180. Strous M, Jetten SM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117PubMedGoogle Scholar
  181. Tabatabai MA (1974) Determination of sulfate in water samples. Sulphur Inst J 10:11–14Google Scholar
  182. Tebo BM, Johson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese (II) oxidation. Trends Microbiol 13:421–428PubMedGoogle Scholar
  183. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318PubMedCentralPubMedGoogle Scholar
  184. Thauer RK, Jungermann K, Deker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Microbiol Mol Biol Rev 41:100–180Google Scholar
  185. Thingstad TF, Hagstrom A, Rassoulzadegan F (1997) Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop? Limnol Oceanogr 42:398–404Google Scholar
  186. Thompson IA, Huber DM, Guest CA, Schulze DG (2005) Fungal manganese oxidation in a reduced soil. Environ Microbiol 7:1480–1487PubMedGoogle Scholar
  187. Tiedje JM, Sextone AJ, Myrold DD, Robinson JA (1982) Denitrification, ecological niches competition and survival. Ant Leeuw Int J G 48:569–583Google Scholar
  188. Tréguer P, Nelson DM, Van Bennekom AJ, Demaster DJ, Quéguiner B, Leynaert A (1995) The silica budget of the World Ocean: a re-estimate. Science 268:375–379PubMedGoogle Scholar
  189. Trimmer M, Risgaard-Petersen N, Nicholls J-C, Engstrom P (2006) Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. Mar Ecol Prog Ser 326:37–47Google Scholar
  190. Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484PubMedGoogle Scholar
  191. van Gemerden H (1993) Microbial mats, a joint venture. Mar Geol 113:3–25Google Scholar
  192. van Herwijnen R, Laverye T, Poole J, Hodson ME, Hutchings TR (2007) The effect of organic materials on the mobility and toxicity of metals in contaminated soils. Appl Geochem 22:2422–2434Google Scholar
  193. van Mooy BAS et al (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72PubMedGoogle Scholar
  194. van Niftrik LA, Fuerst JA, Damste JSS, Kuenen JG, Jetten MSM, Strous M (2004) The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol Lett 233:7–13PubMedGoogle Scholar
  195. van Wambeke F, Nedoma J, Duhamel S, Lebaron P (2008) Alkaline phosphatase activity of marine bacteria studied with ELF97 phosphate: success and limits in P-limited Mediterranean Sea. Aquat Microb Ecol 52:245–251Google Scholar
  196. Vandecasteele J-P (2008) Petroleum microbiology, vols 1 and 2. Editions Technip, ParisGoogle Scholar
  197. Von Wolzogen Kur CAH, van der Vlugt IS (1934) De graphiteering van gietijzer ais electrobiochemisch proces in anaerobe gronden. Water 18:147–165Google Scholar
  198. Wagner M, Loy A, Klein M, Lee N, Ramsing NB, Stahl DA, Friedrich MW (2005) Functional marker genes for identification of sulfate-reducing prokaryotes. Methods Enzymol 397:469–489PubMedGoogle Scholar
  199. Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Widespread occurrence of a unicellular marine planktonic cyanobacterium. Nature 277:293–294Google Scholar
  200. Weisskopf L, Fromin N, Tomasi N, Aragno M, Martinoia E (2005) Secretion activity of white lupin’s cluster roots influences bacterial abundance, function and community structure. Plant and Soil 268:181–194Google Scholar
  201. Widdel F, Pfennig N (1992) The genus Desulfuromonas and other Gram negative sulfur-reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3379–3389Google Scholar
  202. Williams PJB, del Giorgio PA (2005) Respiration in aquatic ecosystems: history and background. In: del Giorgio PA, Williams PJB (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 1–17Google Scholar
  203. Wolin MJ (1974) Metabolic interactions among intestinal microorganisms. Am J Clin Nutr 27:1320–1328PubMedGoogle Scholar
  204. Yoshinari T, Knowles R (1976) Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem Biophys Res Commun 69:705–711PubMedGoogle Scholar
  205. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–589PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jean-Claude Bertrand
    • 1
  • Patricia Bonin
    • 1
  • Pierre Caumette
    • 2
  • Jean-Pierre Gattuso
    • 3
  • Gérald Grégori
    • 1
  • Rémy Guyoneaud
    • 2
  • Xavier Le Roux
    • 4
  • Robert Matheron
    • 5
  • Franck Poly
    • 4
  1. 1.Institut Méditerranéen d’Océanologie (MIO)UM 110, CNRS 7294 IRD 235, Université de Toulon, Aix-Marseille UniversitéMarseille Cedex 9France
  2. 2.Institut des Sciences Analytiques et de Physico-chimie pour l’Environnement et les Matériaux (IPREM)UMR CNRS 5254, Université de Pau et des Pays de l’AdourPau CedexFrance
  3. 3.Observatoire Océanologique, Laboratoire d’ OcéanographieCNRS-UPMCVillefranche-sur-Mer CedexFrance
  4. 4.Microbial Ecology CenterUMR CNRS 5557 / USC INRA 1364, Université Lyon 1VilleurbanneFrance
  5. 5.Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE)UMR-CNRS-IRD 7263, Aix-Marseille UniversitéMarseille Cedex 20France

Personalised recommendations