Skip to main content

Horizontal Gene Transfer in Microbial Ecosystems

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

Microorganisms live in fluctuating environments. At the microscopic scale, their habitats are contrasted and have highly variable physical, chemical, and biological parameters. The versatility of microbial ecosystems implies that microorganisms must constantly adapt to these. Adaptation can result from spontaneous point mutations of the genetic material that creates genetic diversity at the population level. However, this mechanism by itself is not capable of explaining the extraordinary adaptive capacity of microorganisms. Research performed in the first part of the twentieth century has revealed that this capacity results very often from the ability to import genetic material from other microorganisms. This phenomenon is called horizontal (or lateral) gene transfer (HGT). The mechanisms of HGTs and their evolutionary consequences are discussed.

Chapter Coordinator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL, Qiu YL, Stoutemyer M, Palmer JD (2002) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci U S A 99:9905–9912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson JO et al (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8:51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aravind L, Tatusov RL, Wolf YI, Walker DR, Koonin EV (1998) Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet 14:442–444

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci U S A 100:7678–7683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 79:137–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bapteste E et al (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. Methods Mol Biol 532:397–411

    Article  CAS  PubMed  Google Scholar 

  • Berriman M et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422

    Article  CAS  PubMed  Google Scholar 

  • Bhavnani SM, Hammel JP, Jones RN, Ambrose PG (2005) Relationship between increased levofloxacin use and decreased susceptibility of Streptococcus pneumoniae in the United States. Diagn Microbiol Infect Dis 51:31–37

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Forterre P (2007) Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. Archaea 2:83–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brochier-Armanet C, Deschamps P, López-García P, Zivanovic Y, Rodríguez-Valera F, Moreira D (2011) Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea. ISME J 5:1291–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burge C, Campbell AM, Karlin S (1992) Over- and under-representation of short oligonucleotides in DNA sequences. Proc Natl Acad Sci U S A 89:1358–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  CAS  PubMed  Google Scholar 

  • Ceremonie H, Buret F, Simonet P, Vogel TM (2004) Isolation of lightning-competent soil bacteria. Appl Environ Microbiol 70:6342–6346. 509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249

    Article  CAS  PubMed  Google Scholar 

  • Curtis BA et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65

    Article  CAS  PubMed  Google Scholar 

  • d’Herelle F (1917) The nature of bacteriophage. Br Med 2:289–293

    Google Scholar 

  • Danner DB, Deich RA, Sisco KL, Smith HO (1980) An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11:311–318

    Article  CAS  PubMed  Google Scholar 

  • Davis BD (1950) Nonfiltrability of the agents of genetic recombination in Escherichia coli. J Bacteriol 60:507–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci U S A 99:2094–2099

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deppenmeier U et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    CAS  PubMed  Google Scholar 

  • Derelle E et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF, Boucher Y, Nesbo CL, Douady CJ, Andersson JO, Roger AJ (2003) How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond B Biol Sci 358:39–57; discussion 57–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Downie AW (1972) Pneumococcal transformation – a backward view. Fourth Griffith Memorial Lecture. J Gen Microbiol 73:1–11

    Article  CAS  PubMed  Google Scholar 

  • Duckworth DH (1976) Who discovered bacteriophage? Bacteriol Rev 40:793–802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eichinger L et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esser C et al (2004) A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660

    Article  CAS  PubMed  Google Scholar 

  • Forterre P (2002) A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet 18:236–237

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Bouthier De La Tour C, Philippe H, Duguet M (2000) Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from Archaea to Bacteria. Trends Genet 16:152–154

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL et al (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    Article  CAS  PubMed  Google Scholar 

  • Futterer O et al (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci U S A 101:9091–9096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17:352–361

    Article  CAS  PubMed  Google Scholar 

  • Gautier C (2000) Compositional bias in DNA. Curr Opin Genet Dev 10:656–661

    Article  CAS  PubMed  Google Scholar 

  • Ge F, Wang LS, Kim J (2005) The cobweb of life revealed by genome-scale estimates of horizontal gene transfer. PLoS Biol 3:e316

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE (2004) The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52:182–202

    Article  CAS  PubMed  Google Scholar 

  • Goodman SD, Scocca JJ (1988) Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 85:6982–6986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10:7055–7074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffith MB (1928) The significance of pneumococcal types. J Hygiene 27:113–159

    Article  CAS  Google Scholar 

  • Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4:1102–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hallam SJ et al (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A 103:18296–18301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi T et al (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22

    Article  CAS  PubMed  Google Scholar 

  • Heinemann JA, Sprague GF Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:205–209

    Article  CAS  PubMed  Google Scholar 

  • Hotopp JC et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  CAS  Google Scholar 

  • Huang J, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, Kissinger JC (2004) Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol 5:R88

    Article  PubMed Central  PubMed  Google Scholar 

  • Ikeda H, Shiraishi K, Ogata Y (2004) Illegitimate recombination mediated by double-strand break and end-joining in Escherichia coli. Adv Biophys 38:3–20

    Article  CAS  Google Scholar 

  • Inderbitzin P, Harkness J, Turgeon BG, Berbee ML (2005) Lateral transfer of mating system in Stemphylium. Proc Natl Acad Sci U S A 102:11390–11395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  CAS  PubMed  Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL, Hood L, Das- Sarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11:1641–1650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koski LB, Golding GB (2001) The closest BLAST hit is often not the nearest neighbor. J Mol Evol 52:540–542

    Article  CAS  PubMed  Google Scholar 

  • Koski LB, Morton RA, Golding GB (2001) Codon bias and base composition are poor indicators of horizontally transferred genes. Mol Biol Evol 18:404–412

    Article  CAS  PubMed  Google Scholar 

  • Lambert PA (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57:1471–1485

    Article  CAS  PubMed  Google Scholar 

  • Lan R, Reeves PR (1996) Gene transfer is a major factor in bacterial evolution. Mol Biol Evol 13:47–55

    Article  CAS  PubMed  Google Scholar 

  • Lan R, Reeves PR (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:396–401

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95:9413–9417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lederberg J (1947) Gene recombination and linked segregations in Escherichia Coli. Genetics 32:505–525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lerat E, Daubin V, Moran NA (2003) From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria. PLoS Biol 1:E19

    Article  PubMed Central  PubMed  Google Scholar 

  • Livermore D (2004) Can better prescribing turn the tide of resistance? Nat Rev Microbiol 2:73–78

    Article  CAS  PubMed  Google Scholar 

  • Livermore DM, Woodford N (2000) Carbapenemases: a problem in waiting? Curr Opin Microbiol 3:489–495

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia P, Brochier C, Moreira D, Rodriguez- Valera F (2004) Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ Microbiol 6:19–34

    Article  CAS  PubMed  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV (2007) Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2:33

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martin W et al (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maughan H, Redfield RJ (2009) Extensive variation in natural competence in Haemophilus Influenzae. Evolution 63:1852–1866

    Article  PubMed  Google Scholar 

  • Millen RS et al (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mongodin EF et al (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic Bacteria and Archaea. Proc Natl Acad Sci U S A 102:18147–18152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murray NE (2000) Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 64:412–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36:760–766

    Article  CAS  PubMed  Google Scholar 

  • Nelson KE et al (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  CAS  PubMed  Google Scholar 

  • Nesbo CL, L’Haridon S, Stetter KO, Doolittle WF (2001) Phylogenetic analyses of two “archaeal” genes in Thermotoga maritima reveal multiple transfers between archaea and bacteria. Mol Biol Evol 18:362–375

    Article  CAS  PubMed  Google Scholar 

  • Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M, Fukatsu T (2008) Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res 18:272–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Normand P et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51:381–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Germot A, Moreira D (2000) The new phylogeny of eukaryotes. Curr Opin Genet Dev 10:596–601

    Article  CAS  PubMed  Google Scholar 

  • Podell S, Gaasterland T (2007) DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol 8:R16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ragan MA (2001) On surrogate methods for detecting lateral gene transfer. FEMS Microbiol Lett 201:187–191

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Arcos S, Fernandez-Herrero LA, Marin I, Berenguer J (1998) Anaerobic growth, a property horizontally transferred by an Hfr-like mechanism among extreme thermophiles. J Bacteriol 180:3137–3143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ricard G et al (2006) Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 7:22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ (2006) Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr Biol 16:1857–1864

    Article  CAS  PubMed  Google Scholar 

  • Rocha EP, Viari A, Danchin A (1998) Oligonucleotide bias in Bacillus subtilis: general trends and taxonomic comparisons. Nucleic Acids Res 26:2971–2980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roger AJ (1999) Reconstructing Early events in eukaryotic evolution. Am Nat 154:S146–S163

    Article  PubMed  Google Scholar 

  • Ruepp A et al (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–513

    Article  CAS  PubMed  Google Scholar 

  • Simpson AG, Perley TA, Lara E (2008) Lateral transfer of the gene for a widely used marker, alpha-tubulin, indicated by a multi-protein study of the phylogenetic position of Andalucia (Excavata). Mol Phylogenet Evol 47:366–377

    Article  CAS  PubMed  Google Scholar 

  • Slot JC, Hibbett DS (2007) Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS One 2:e1097

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith HO, Tomb JF, Dougherty BA, Fleischmann RD, Venter JC (1995) Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269:538–540

    Article  CAS  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  CAS  PubMed  Google Scholar 

  • Szollosi GJ, Boussau B, Abby SS, Tannier E, Daubin V (2012) Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc Natl Acad Sci U S A 109:17513–17518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taddei F, Matic I, Radman M (1996) Du nouveau sur l’origine des especes. La recherche 291:52–59

    Google Scholar 

  • Tatum EL, Lederberg J (1947) Gene recombination in the bacterium Escherichia coli. J Bacteriol 53:673–684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tettelin H et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  CAS  PubMed  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  CAS  PubMed  Google Scholar 

  • Touchon M et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 2:1241–1243

    Article  Google Scholar 

  • Zeldovich KB, Berezovsky IN, Shakhnovich EI (2007) Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 3:e5

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhaxybayeva O (2009) Detection and quantitative assessment of horizontal gene transfer. Methods Mol Biol 532:195–213

    Article  CAS  PubMed  Google Scholar 

  • Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhaxybayeva O, Nesbo CL, Doolittle WF (2007) Systematic overestimation of gene gain through false diagnosis of gene absence. Genome Biol 8:402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhaxybayeva O et al (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci U S A 106:5865–5870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zinder ND (1992) Forty years ago: the discovery of bacterial transduction. Genetics 132:291–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679–699. 512 512

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Brochier-Armanet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brochier-Armanet, C., Moreira, D. (2015). Horizontal Gene Transfer in Microbial Ecosystems. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_12

Download citation

Publish with us

Policies and ethics