In Situ Photocatalytic Reduction for Contaminated Soil with Hexavalent Chromium by Titanium Dioxide

  • A. López–Vásquez
  • N. Ramirez
  • R. López–Vásquez
Conference paper


The photocatalytic reduction of hexavalent chromium was conducted in laboratory environment in order to evaluate the alternative use of this technology for in situ decontamination. The soil samples used had initial concentrations of Cr(VI) of 651.0, 308.0 and 112.0 mg kg−1, with loads of catalyst TiO2 which were exposed to UV irradiation through black light. Different loads of catalyst of 0.1–2 % (w/w) were tested in soil contaminated by hexavalent chromium with a concentration of 651 mg kg−1 for a period of 88 h of exposure. In addition, we examined the effect of alkalinity Ca(OH)2 (10 % w/w). The rise in the pH due to Ca(OH)2 addition shows no measurable effect on the chromium reduction. The photocatalytic remediation using TiO2 combined with UV light showed their effectiveness in the reduction of Cr(VI) at 2.0, 4.0 and 6.0 cm of depth of contaminated soil, moreover also showed mobility of the contaminant towards to surface.


Chromium (VI) Flood-affected soil In situ treatment Photocatalytic reduction Remediation soil Titanium dioxide 


  1. 1.
    A. López–Vásquez, L.N. Ramírez Q, E. Benavides–Contreras, R. López–Vásquez, In–situ photocatalytic reduction of hexavalent chromium in contaminated soil, in Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science, WCECS 2013, pp. 632–635, San Francisco, 23–25 Oct 2013Google Scholar
  2. 2.
    World Bank (2012) Integrated Urban Water Management Case Study: Bogota, Blue Water Green Cities, The World Bank,
  3. 3.
    C.A. Pereira, J. Tavares, G.G. Cavalcante, F.F. Vieira, Aplicação de radiação UV artificial e solar no tratamento fotocatalítico de efluentes de curtumbre. Quim. Nova 30(5), 1082–1087 (2007)Google Scholar
  4. 4.
    Descontaminación del río Bogota,
  5. 5.
    Z. Song, C.J. Williams, R.J. Edyvean, Sedimentation of tannery wastewater. Water Res. 34, 2171–2176 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Mwinyihija, in Ecotoxicological Diagnosis in the Tanning Industry,ed. by G.F. Marx. Main Pollutants and Environmental Impacts of the Tanning Industry, (Springer, Heidelberg, 2010), pp. 17–35Google Scholar
  7. 7.
    Secretaría Distrital de Ambiente Bogota D.C, Colombia, Resolución No 3956 de 2009, Junio 19 de 2009Google Scholar
  8. 8.
    Secretaria de Medio Ambiente y Recursos Naturales, Mexico. NORMA Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004. March 2007Google Scholar
  9. 9.
    C.E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 223–224, 1–12 (2012)Google Scholar
  10. 10.
    X. Tian, X. Gao, F. Yang, Y. Lan, J.D. Mao, L. Zhou, Catalytic role of soils in the transformation of Cr(VI) to Cr(III) in the presence of organic acids containing α-OH groups. Geoderma 159(3–4), 270–275 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Kotas, Z. Stasicka, Chromium occurrence in the environment and methods of its speciation. Environ. Pollu. 107(3), 263–283 (2000)CrossRefGoogle Scholar
  12. 12.
    R.J. Bartlett, J.M. Kimble, Behaviour of chromium in soils: I trivalent forms. J. Environ. Qual. 8(1), 31–35 (1976)CrossRefGoogle Scholar
  13. 13.
    O. Tunay, D. Orhon, I. Kabdasli, Pretreatment requirements for leather tanning industry wastewaters. Water Sci Tech 29(9), 121–128 (1994)Google Scholar
  14. 14.
    M.M. Higarashi, W.F. Jardim, Remediation of pesticide contaminated soil using TiO2 mediated by solar light. Catal. Today 76(2–4), 201–207 (2002)CrossRefGoogle Scholar
  15. 15.
    A. Assadi, M.H. Dehghani, N. Rastkari, S. Nasseri, A.H. Mahvi, Photocatalytic reduction of hexavalent chromium in aqueous solutions with zinc oxide nanoparticles and hydrogen peroxide. Environ. Prot. Eng. 38(4), 5–16 (2012)Google Scholar
  16. 16.
    A.F. Lopez-Vasquez, J.A. Colina-Marquez, F. Machuca-Martinez, Multivariable analysis of 2,4-D herbicide photocatalytic degradation. Dyna 78(168), 119–125 (2011)Google Scholar
  17. 17.
    X. Quan, X. Zhao, S. Chen, H.M. Zhao, J.W. Chen, Y.Z. Zhao, Enhancement of p, p-DDT photodegradation on soil surfaces using TiO2 induced by UV-light. Chemosphere 60(2), 266–273 (2005)CrossRefGoogle Scholar
  18. 18.
    D. Dong, P. Li, X. Li, Q. Zhao, Y. Zhang, C. Jia, P. Li, Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. J. Hazar. Mater. 174(1–3), 859–863 (2010)CrossRefGoogle Scholar
  19. 19.
    US Environmental Protection Agency (EPA), Methods for Chemical Analysis of Water and Wastes. Method 7196 A,

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. López–Vásquez
    • 1
    • 2
  • N. Ramirez
    • 1
  • R. López–Vásquez
    • 3
  1. 1.Environmental Engineering DepartmentUniversidad LibreBogotaColombia
  2. 2.Chemical Engineering SchoolUniversidad del ValleCaliColombia
  3. 3.Faculty of Engineering, Engineering DepartmentUniversidad de CaldasManizalesColombia

Personalised recommendations