Detailed Analysis of Deformation Behavior of Plexiform Bone Using Small Specimen Testing and Finite Element Simulation

  • Nitin Kumar Sharma
  • Swati Sharma
  • Daya K. Sehgal
  • Rama Kant Pandey
Conference paper

Abstract

Bone is a complex anisotropic and heterogeneous material. The structure of bone material is considered to be hierarchical in nature that changes from nano to macro level. Small punch testing, used in the present study, is a very useful technique to analyze the deformational behavior of materials that are difficult to obtain in a sufficient size for conventional mechanical testing. The finite element modeling (FEM) of small punch testing was carried out using ABAQUS code. The material properties of cortical bone for FE simulation were considered to be both isotropic and transversely isotropic in nature. This study shows that isotropic tensile properties of cortical bone are sufficient to predict the deformational behavior of cortical under small punch testing.

Keywords

Anisotropy Cortical bone Finite element simulation Heterogeneity Small punch testing Transversely isotropic material 

References

  1. 1.
    N. Sasaki, N. Matsushima, T. Ikawa, H. Yamamura, A. Fukuda, Orientation of bone mineral and its role in the anisotropic mechanical properties of bone-transversely anisotropy. J. Biomech. 22, 157–164 (1989)CrossRefGoogle Scholar
  2. 2.
    S. Weiner, H.D. Wagner, The material bone: structure-mechanical function relations. Ann. Rev. Mater. Sci. 28, 271–298 (1998)CrossRefGoogle Scholar
  3. 3.
    R.A. Robinson, S.R. Elliot, The water content of bone: I. The mass of water inorganic crystals organic matrix and ‘CO2 space’ components in a unit volume of dog bone. J. Bone Joint Surg. 39A, 167–188 (1957)Google Scholar
  4. 4.
    R.B. Martin, Porosity and specific surface of bone. CRC Crit. Rev. (1984) Google Scholar
  5. 5.
    E. Lucchinetti, Composite Models of Bone Properties, Bone Mechanics Handbook, 2nd edn, chap. 3 (CRC Press, Boca Raton, 2001), pp. 12.1–12.19Google Scholar
  6. 6.
    J. McElhaney, J. Fogle, E. Byars, G. Weaver, Effect of embalming on the mechanical properties of beef bone. J. Appl. Physiol. 19, 1234–1236 (1964)Google Scholar
  7. 7.
    R.W. McCalden, J.A. McGeough, M.B. Barker, C.M. Courtbrown, Age related-changes in the tensile properties of cortical bone: the relative importance of changes in porosity, mineralization and microstructure. J. Bone Joint Surg. Am. 75A, 1193–1205 (1993)Google Scholar
  8. 8.
    F.G. Evans, M. Lebow, Regional differences in some of the physical properties of the human femur. J. Appl. Physiol. 3, 563–572 (1951)Google Scholar
  9. 9.
    D.T. Reilly, A.H. Burstein, V.H. Frankel, The elastic modulus for bone. J. Biomech. 7, 271–275 (1975)CrossRefGoogle Scholar
  10. 10.
    N.K. Sharma, D.K. Sehgal, R.K. Pandey, Studies on locational variation of shear properties in cortical bone with Iosipescu shear test. Appl. Mech. Mater. 148–149, 276–281 (2012)Google Scholar
  11. 11.
    G.E. Lucas, Review of small specimen test technique for irradiation testing. Metall. Trans. A 21A, 1105–1119 (1990)CrossRefGoogle Scholar
  12. 12.
    J.S. Cheon, I.S. Kim, Initial deformation during small punch testing. J. Test. Eval. 24, 255–262 (1996)CrossRefGoogle Scholar
  13. 13.
    J.M. Baik, J. Kameda, O. Buck, Small punch test evaluation of inter-granular embrittlement of an alloy steel. Scr. Metall. 17, 1443–1447 (1983)CrossRefGoogle Scholar
  14. 14.
    M.P. Manahan, A.S. Argon, O.K. Harling, The development of miniaturized disk bend test for the determination of post irradiation mechanical properties. J. Nucl. Mater. 103–104, 1545–1550 (1981)CrossRefGoogle Scholar
  15. 15.
    F.M. Huang, M.L. Hanilton, G.L. Wire, Bend testing for miniature disk. Nucl. Technol. 57, 234 (1982)Google Scholar
  16. 16.
    N.K. Sharma, S. Sharma, D.K. Sehgal, R.K. Pandey, Studies on deformational behavior of cortical bone using small punch testing and finite element simulation, in Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science, WCECS 2013, pp. 920–924, San Francisco, USA, 23–25 Oct 2013Google Scholar
  17. 17.
    N.K. Sharma, D.K. Sehgal, R.K. Pandey, R. Pal, Finite element simulation of cortical bone under different loading and anisotropic yielding situations, in Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering and Computer Science, WCECS 2012, vol. 2, pp. 1265–1270, San Francisco, USA, 24–26 Oct 2012Google Scholar
  18. 18.
    H.S. Gupta, W. Wagermaier, G.A. Zickler, D.R.B. Aroush, S.S. Funari, Nanoscale deformation mechanisms in bone. Nano Lett. 5, 2108–2111 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nitin Kumar Sharma
    • 1
  • Swati Sharma
    • 2
  • Daya K. Sehgal
    • 2
  • Rama Kant Pandey
    • 2
  1. 1.School of TechnologyThe Glocal UniversitySaharanpurIndia
  2. 2.Department of Applied MechanicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations