Advertisement

Efficient Bandwidth Allocation Methods in Upstream EPON

  • S. K. Sadon
  • N. M. Din
  • N. A. Radzi
  • Mashkuri Bin Yaacob
  • Martin Maier
  • M. H. Al-Mansoori
Conference paper

Abstract

The Internet has become the world’s leading universal global communication infrastructure. Optical solutions are sought after at the access network to support the ever increasing demand in bandwidth. Passive Optical Networks (PONs) are seen to provide a cost effective solution for this. PON Dynamic Bandwidth Allocation (DBA) scheme provides the means for upstream traffic allocation. In this paper, the operation of several bandwidth allocation algorithms in upstream Ethernet PON (EPON) is presented. An Efficient Distributed DBA (EDDBA) that supports Quality of Service (QoS) for both inter and intra ONU allocation is proposed. The proposed scheme introduces an identical DBA algorithm running simultaneously in each ONU. The simulation performance for the proposed DBA was conducted using Prolog and shows flexibility, reliability in handling data, voice, and video traffic.

Keywords

DBA Decentralized allocation EPON PROLOG Qos SBA 

Notes

Acknowledgment

We would like to acknowledge and thank the Ministry of Science, Technology and Innovation Malaysia for funding this project under the Escience Fund 01-02-03-SF0247.

References

  1. 1.
    K.G. Coman, in Handbook of Massive Data Sets. Internet Growth: Is There a “Moore’s Law” for Data Traffic (Kluwer Academic, Dordrecht, 2001), pp. 47–93Google Scholar
  2. 2.
    N.M. Din, Fuzzy logic traffic control for differentiated service-aware generalized multi- protocol label switching network. Ph.D. thesis, Universiti Teknologi Malaysia, July 2007Google Scholar
  3. 3.
    ITU-T Recommendation G.983.1, Broadband optical access systems based on Passive Optical Networks (PON). (1998), pp. 1–110Google Scholar
  4. 4.
    ITU-T Recommendation G.983.2, ONT management and control interface specification for B-PON. (2005), pp. 1–359Google Scholar
  5. 5.
    ITU-T Recommendation G.983.3, A broadband optical access system with increased service capability by wavelength allocation. (2001), pp. 1–51Google Scholar
  6. 6.
    ITU-T Recommendation G.983.4, A broadband optical access system with increased service capability using dynamic bandwidth assignment. (2001), pp. 1–82Google Scholar
  7. 7.
    I. Cale, A. Salihovic, M. Ivekovic, Gigabit passive optical network: GPON.2007, in Proceedings of the 29th International Conference on Information Technology Interfaces, ITI 2007, pp. 679–684Google Scholar
  8. 8.
    C.F. Lam, Passive Optical Networks (Academic Press, Burlington, 2007)Google Scholar
  9. 9.
    J. Majithia, W. Zhang, Performance results of CSMA/CD ethernet with various acknowledgement schemes, in Proceedings of the International Conference of IEEE Region 10 Technology Enabling Tomorrow: Computers, Communications and Automation towards the 21st Century, TENCON ‘92, Nov 1992, pp. 6–10Google Scholar
  10. 10.
    IEEE Standards, IEEE P802.3ah ethernet in the first mile task force (2004), http://www.ieee802.org/3/efm/public/comments/
  11. 11.
    C. Assi, Y. Ye, S. Dixit, M. Ali, Dynamic bandwidth allocation for quality-of-service over ethernet PONs. IEEE J. Sel. Areas Commun. 21(9), 1467–1477 (2003)Google Scholar
  12. 12.
    F. Le Faucher, Russian dolls bandwidth constraints model for diffserv-aware MPLS traffic engineering. (The Internet Society, RFC 4127, 2005), http://community.roxen.com/developers/idocs/rfc/rfc4127.html
  13. 13.
    S.K. Sadon, N.M. Din, M.H. Al-Mansoori, N.A. Radzi, M. Mustafa, M.S.A. Majid, Dynamic hierarchical bandwidth allocation using Russian doll model in EPON. J. Comput. Electr. Eng. 38, 1480–1489 (2012)Google Scholar
  14. 14.
    B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON. IEEE Communications Magazine (2009), pp. 540–548Google Scholar
  15. 15.
    G. Kramer, B. Mukherjee, G. Pesavento, Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network. Photonic Netw. Commun. 4(1), 89–107 (2002)Google Scholar
  16. 16.
    IEEE Standards, IEEE 802.1D local and metropolitan area networks: media access control (MAC) bridges (2004). http://www.dcs.gla.ac.uk/~lewis/teaching/802.1D-2004.pdf
  17. 17.
    M. McGarry, M. Maier, M. Reisslein, Ethernet PONs: a survey of dynamic bandwidth allocation (DBA) algorithms. IEEE Commun. Mag. 42(8), 8–15 (2004)Google Scholar
  18. 18.
    H.J. Byun, J.M. Nho, J.T. Lim, Dynamic bandwidth allocation algorithm in ethernet passive optical networks. Electr. Lett. 39(13), 1001–1002 (2003)Google Scholar
  19. 19.
    S.I. Choi, J.D. Huh; Dynamic bandwidth allocation algorithm for multimedia services over ethernet PONs. ETRI J. 24(6), 465–468 (2002)Google Scholar
  20. 20.
    J. Xie, S. Jiang, Y. Jiang, A dynamic bandwidth allocation scheme for differentiated services in EPONs IEEE Commun.Mag. 42(8), 32–39 (2004)Google Scholar
  21. 21.
    K.H. Ahn, K.E. Han, and Y.C. Kim, Hierarchical dynamic bandwidth allocation algorithm for multimedia services over ethernet PONs, ETRI J. 26, 321–333 (2004)Google Scholar
  22. 22.
    Y. Zhu, M. Ma, T. Hiang Cheng, An efficient solution for mitigating light-load penalty in EPONs. Comput. Electr. Eng. 32(6), 426–431, 2006Google Scholar
  23. 23.
    ITU-T Recommendation G.983.5, A broadband optical access system with enhanced survivability (2002), pp. 1–51Google Scholar
  24. 24.
    G. Kramer, B. Mukherjee, G. Pesavento, Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network. Photonic Netw. Commun. 4(1), 89–107 (2002)Google Scholar
  25. 25.
    IEEE Standards, IEEE 802.1D local and metropolitan area networks: media access control (MAC) bridges (2004). http://www.dcs.gla.ac.uk/~lewis/teaching/802.1D-2004.pdf
  26. 26.
    J. Zheng, H.T. Mouftah, A survey of dynamic bandwidth allocation algorithms for ethernet passive optical networks. J. Opt. Switching Netw. 6, 151–162 (2009)Google Scholar
  27. 27.
    M. McGarry, M. Maier, M. Reisslein, Ethernet PONs: a survey of dynamic bandwidth allocation (DBA) algorithms. IEEE Commun. Mag. 42(8), 8–15 (2004)Google Scholar
  28. 28.
    C. Assi, Y. Ye, S. Dixit, M. Ali, Dynamic bandwidth allocation for quality-of-service over Ethernet PONs. IEEE J. Sel. Areas Commun. 21, 1467–1477 (2003)Google Scholar
  29. 29.
    X. Bai, A. Shami, C. Assi, On the fairness of dynamic bandwidth allocation schemes in ethernet passive optical networks. Comput. Commun. 29(11), 2123–2135 (2006)Google Scholar
  30. 30.
    M. Maier, N. Ghazisaidi, FiWi Access Networks (Cambridge university press, Cambridge, 2012). www.cambridge.org
  31. 31.
    S.R. Sherif, A. Hadji Antonis, G. Ellinas, C. Assi, M.A. Ali, A novel decentralized ethernet-based PON access architecture for provisioning differentiated Q0S. J. Light wave Technol. 22, 2483–2497 (2004)Google Scholar
  32. 32.
    E. Wong, C. Chang-Joon, Efficient dynamic bandwidth allocation based on upstream broadcast in ethernet passive optical networks. Opt. Fiber Commun. Conf. 6, 3 (2005)Google Scholar
  33. 33.
    A.S.M. Delowar Hossain, H. Erkan, M.A. Ali, A distributed control plane architecture for EPON, in Proceedings of the 2nd International Conference on Innovations in Information Technology, 2005Google Scholar
  34. 34.
    F. Cao, D. Liu, M.Z. Kang Yang, L.D YinboQian, A distributed dynamic bandwidth allocation algorithm in EPON. Mod. Appl. Sci. 4, 20–24 (2010)Google Scholar
  35. 35.
    A. H. Helmy, Habib Fathallah, and Adel Abdennour, Decentralized media access versus credit-based centralized bandwidth allocation for LR-PONs, in Proceedings of the High Capacity Optical Networks and Enabling Technologies (HONET), Dec 2011, pp. 329–333Google Scholar
  36. 36.
    D. Nikolova, B.V. Houdt, C. Blondia, QoS issues in EPON, in Proceedings of the Community Nets and FTTH/P/x Workshop, 2003Google Scholar
  37. 37.
    N.A.M. Radzi, N.M. Din, M.H. Al-Mansoori, I.S. Mustafa, S.K. Sadon, Intelligent dynamic bandwidth allocation algorithm in upstream EPONs. J. Opt. Commun. Netw. 2(3), 148–158Google Scholar
  38. 38.
    N.A.M. Radzi, N.M. Din, M.S.A. Majid, M.H. Al-Mansoori, Global priority DBA using fuzzy logic in ethernet PON, in Proceedings of the 17th Asia Pacific Communications Conference (APCC), 2011, pp. 113–116Google Scholar
  39. 39.
    B. Lung, PON architecture ‘future proofs’ FTTH. Lightwave Mag. 16(10), 104–107 (1999)Google Scholar
  40. 40.
    D. Sala, A. Gummalla, PON functional requirements: services and performance, in Proceedings of the IEEE 802.3ah Meeting in Portland OR, July 2001Google Scholar
  41. 41.
    S.K. Sadon, N.M. Din, N.A. Radzi, M.H. Al-Mansoori, Efficient decentralized dynamic bandwidth allocation in EPON, in Proceedings of the World Congress on Engineering and Computer Science, WCECS 2013. Lecture Notes in Engineering and Computer Science. San Francisco, 23–25 Oct 2013, pp. 746–749Google Scholar
  42. 42.
    Logic Programming Associate, Available: http://www.lpa.co.uk/win_det.htm

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. K. Sadon
    • 1
  • N. M. Din
    • 1
  • N. A. Radzi
    • 1
  • Mashkuri Bin Yaacob
    • 1
  • Martin Maier
    • 2
  • M. H. Al-Mansoori
    • 3
  1. 1.Center for Communications Service Convergence Technologies, College of Engineering, Universiti Tenaga NasionalKajangMalaysia
  2. 2.Optical Zeitgeist LaboratoryMontréalCanada
  3. 3.Faculy of EngineeringSohar UniversitySoharOman

Personalised recommendations