CLAHE Inspired Segmentation of Dermoscopic Images Using Mixture of Methods

  • Damilola A. Okuboyejo
  • Oludayo O. Olugbara
  • Solomon A. Odunaike
Conference paper


The overarching objective of this study is to segment lesion areas of the surrounding healthy skin. The localization of the actual lesion area is an important step towards the automation of a diagnostic system for discriminating between malignant and benign lesions. We have applied a combination of methods, including intensity equalization, thresholding, morphological operation and GrabCut algorithm to segment the lesion area in a dermoscopic image. The result shows that the approach used in the study is effective in localizing lesion pixels in a dermoscopic image. This would aid the selection of discriminating features for the classification of malignancy of a given dermoscopic image.


Automation CLAHE Diagnosis Lesions Melanoma Segmentation 


  1. 1.
  2. 2.
    H. Pehamberger, A. Steiner, K. Wolff, In vivo Epiluminiscence microscopy of pigmented skin lesion: pattern analysis of pigmented skin lesions. J. Am. Acad Dermatol. 17, 571–583 (1987)Google Scholar
  3. 3.
    W. Stolz, A. Riemann, A. Cognetta et. al., ABCD rule of dermoscopy: a new practical method for early recognition of malignant melanoma. Eur. J. Dermatol. 4, 521–527 (1994)Google Scholar
  4. 4.
    H. Kittler, Dermoscopy of pigmented skin lesions. G.Ital. Dermatol. Venereol. 139(6), 541–546 (2004)Google Scholar
  5. 5.
    D.A. Okuboyejo, O.O. Olugbara, S.A. Odunaike, Automating skin disease diagnosis using image classification, Lecture Notes in Engineering and Computer Science. in Proceedings of the World Congress on Engineering and Computer Science 2013, WCECS, 2013, 23–25 Oct 2013, (USA, San Franscisco, 2013), pp. 850–854Google Scholar
  6. 6.
    P. Rubegni, G. Cevenini, M. Burroni, P. Roberto, G.D. Eva, P. Sbano, C. Moracco, P. Luzi, P. Tosi, P. Barbini, L. Andreassi, Automated diagnosis of pigmented skin lesion. Int. J. Cancer 101, 576–580 (2002)Google Scholar
  7. 7.
    C. Rosendahl, P. Tschandl, A. Cameron, H. Kittler, Diagnostic accuracy of dermatoscopy for melanocytic and nonmelanocytic pigmented lesions. J. Am. Acad Dermatol. 64, 1068–1073 (2001). doi:  10.1016/j.jaad.2010.03.039
  8. 8.
    I. Stanganelli, A. Brucale, L. Calori, R. Gori, A. Lovato, S. Magi, B. Kopf, R. Bacchilega, V. Rapisarda, A. Testori, A. Ascierto, E. Simeone, M. Ferri, Computer-aided diagnosis of melanocytic lesions, in Proceedings of Anticancer Research, 2005, pp. 4577–4582Google Scholar
  9. 9.
    A.K. Mittra, R. Parekh, Automated detection of skin disease using texture features. Int. J. Eng. Sci. Tech. 3(6) (2011)Google Scholar
  10. 10.
    K. Zuiderveld, Contrast Limited Adaptive Histogram Equalization, (Academic Press, New York, 1994), pp. 474–485Google Scholar
  11. 11.
    Q. Abbas, M.E. Celebi, I.F. García, Skin tumor area extraction using an improved dynamic programming approach. Skin Res. Tech. 18, 133–142 (2012)Google Scholar
  12. 12.
    R. Dobrescu, M. Dobrescu, S. Mocanu, D. Popescu, Medical images classification for skin cancer diagnosis based on combined texture and fractal analysis, in Proceedings of WSEAS Transactions on Biology and Biomedicine, 2010 (2010)Google Scholar
  13. 13.
    H. Ganster, A. Pinz, R. Roher, E. Wilding, M. Binder, H. Kittler, Automated melanoma recognition. IEEE Trans. Med. Imaging 20(3), 3 (2001)Google Scholar
  14. 14.
    P.G. Cavalcanti, J. Scharcanski, A coarse-to-fine approach for segmenting melanocytic skin lesions in standard camera images. Comput. Methods Programs Biomed. 112, 684–693 (2013). doi:  10.1016/j.cmpb.2013.08.010
  15. 15.
    N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber 9(1), 62–66 (1979). doi:  10.1109/TMSC.1979.4310076
  16. 16.
    N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, Y. Miyake, Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. in ACMSIGGRAPH, SIGGRAPH’03,; 2003; (ACM, New York, NY, USA, 2003), pp. 770–779Google Scholar
  17. 17.
    M.M. Rahman, P. Bhattacharya, B.C. Desai, A multiple expert-based melanoma recognition system for dermoscopic images of pigmented skin lesions, in Proceedings of 8th IEEE International Conference on BioInformatics and BioEngineering (BIBE), 2008, 8–10 Oct 2008, pp. 1–6Google Scholar
  18. 18.
    G. Schaefer, M.I. Rajab, M.E. Celebi, H. Iyatomi, Skin lesion extraction in dermoscopic images based on colour enhancement and iterative segmentation, in Proceedings of ICIP (2009), pp. 3361–3364Google Scholar
  19. 19.
    S. Supot, Border detection of skin lesion images based on fuzzy C-Means thresholding, in Proceedings of 3rd International Conference on Genetic and Evolutionary Computing (2009), pp. 777–780Google Scholar
  20. 20.
    M.E. Yuksel, M. Borlu, Accurate Segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 17(4), 976–982 (2009)Google Scholar
  21. 21.
    S.M.S. Ebrahimi, H. Pourghassem, Lesion Detection in dermoscopy images using Sarsa reinforcement algorithm, in Proceedings of 17th Iranian Conference of Biomedical Engineering (ICBME2010), 2010, 3–4 Nov 2010Google Scholar
  22. 22.
    M.E. Celebi, S. Hwang, H. Iyatomi, G. Schaefer, Robust Border detection in dermoscopy images using threshold fusion, in Proceedings of IEEE 17th International Conference on Image Processing, 2010, Hong Kong, 26–29 Sept 2010Google Scholar
  23. 23.
    J. Humayun, A.S. Malik, N. Kamel, Multilevel thresholding for segmentation of pigmented skin lesions, in Proceedings of IEEE International Conference on Imaging Systems and Techniques (IST) (2011)Google Scholar
  24. 24.
    C. Rother, V. Kolmogorov, A. Blake, GrabCut: interactive foreground extraction using iterated graph cuts. in ACM SIGGRAPH; 2004, (ACM, Los Angeles, California, 2004), Aug 2004, pp. 309–314Google Scholar
  25. 25.
    D.J. Ketcham, R.W. Lowe, J.W. Weber, Image enhancement techniques for cockpit displays, Technical report (1974)Google Scholar
  26. 26.
    Y. Boykov, M.P. Jolly, Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images, in Proceedings of IEEE International Conference on Computer Vision (2001)Google Scholar
  27. 27.
    M. Orchard, C. Bouman, Color quantization of images. IEEE Trans. Sig. Process. 39, 2677–2690 (1991)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Damilola A. Okuboyejo
    • 1
  • Oludayo O. Olugbara
    • 2
  • Solomon A. Odunaike
    • 1
  1. 1.Department of Software EngineeringTshwane University of TechnologyPretoriaSouth Africa
  2. 2.Department of Information TechnologyDurban University of TechnologyDurbanSouth Africa

Personalised recommendations