Advertisement

Algorithmic Analysis of the Pseudoanalytic Cryptographic Algorithm

  • Ariana Guadalupe Bucio Ramirez
  • Cesar Marco Antonio Robles Gonzalez
  • Marco Pedro Ramirez Tachiquin
  • Rogelio Adrian Hernandez Becerril
Conference paper

Abstract

In order to protect the information, the study and development of a new cryptographic method is a hard duty, due to the high amount of techniques to decrypt and obtain the information; this works is fully dedicated to analyse the run time of the cipher method employing the Pseudoanalytic Function Theory. The main purpose of this work, is to analyse the cipher method exposed in [3] and calculate the time complexity in order to study the behaviour and look at the possibility to develop an optimized algorithm, preserving the property of confidentiality information, but decreasing the time lapse.

Keywords

Algorithm Cipher Complexity Cryptography Electrical impedance tomography Mathematics Pseudoanalytic Security Vekua 

References

  1. 1.
    V.V. Kravchenko, Applied Pseudoanalytic Function Theory, Series: Frontiers in Mathematics, ISBN: 978-3-0346-0003-3 (2009)Google Scholar
  2. 2.
    L. Bers, Theory of Pseudoanalytic Functions (IMM New York University, New York, 1953)Google Scholar
  3. 3.
    A. Bucio Ramirez, R. Castillo-Perez, M.P. Ramirez Tachiquin, On the Numerical Construction of Formal Powers and their Application to the Electrical Impedance Equation, Proceedings of 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, IEEE Catalog Number: CFP11827-ART, ISBN:978-1-4577-1013-1, pp. 769–774 (2011)Google Scholar
  4. 4.
    M.P. Ramirez Tachiquin, M.C. Robles Gonzalez, R.A. Hernandez-Becerril, A. Bucio Ramirez, First characterization of a new method for numerically solving the Dirichlet problem of the two-dimensional electrical impedance equation, J. Appl. Math. 2013(493483), p. 14 (2013)Google Scholar
  5. 5.
    J.G. Webster, Electrical Impedance Tomography (Adam Hilger Series on Biomedical Engineering, New York, 1990)Google Scholar
  6. 6.
    A.P. Calderon, On an Inverse Boundary Value Problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasil. Mat., pp. 65–73 (1980)Google Scholar
  7. 7.
    A. Bucio Ramirez, R. A. Hernandez-Becerril, C.M.A. Robles Gonzalez, M.P. Ramirez Tachiquin, A. Arista-Jalife, Construction of a New Cryptographic Method, Employing Pseudoanalytic Function Theory, Proceedings of the World Congress on Engineering and Computer Science 2013, vol 1. WCECS 2013, ISBN: 978-988-19252-3-7, pp. 96-101 (2013)Google Scholar
  8. 8.
    C.M.A. Robles Gonzalez, A. Bucio Ramirez, M.P. Ramirez Tachiquin, New characterization of an improved numerical method for solving the electrical impedance equation in the plane: an approach from the modern pseudoanalytic function theory. IAENG Int. J. Appl. Math., 43(1), IJAM_43_1_03 (2013)Google Scholar
  9. 9.
    K. Astala, L. Päivärinta, Calderon’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)CrossRefMATHGoogle Scholar
  10. 10.
    I.N. Vekua, Generalized Analytic Functions, International Series of Monographs on Pure and Applied Mathematics (Pergamon Press, London, 1962)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ariana Guadalupe Bucio Ramirez
    • 1
  • Cesar Marco Antonio Robles Gonzalez
    • 2
  • Marco Pedro Ramirez Tachiquin
    • 3
  • Rogelio Adrian Hernandez Becerril
    • 2
  1. 1.UPIITA-IPNEcatepec Estado de MexicoMexico
  2. 2.ESIME-IPNCiudad de MéxicoMexico
  3. 3.Postgraduate Section of Mechanical Engineering SchoolInstituto Politecnico Nacional Mexico CityCiudad de MéxicoMexico

Personalised recommendations