Skip to main content

Control over Growth in Cold Climates

  • Chapter
  • First Online:
Trees in a Changing Environment

Part of the book series: Plant Ecophysiology ((KLEC,volume 9))

Abstract

Trees harmonize their growing cycles with the natural seasonal changes, and this is crucial in ecosystems with marked climatic differences between the periods favorable and unfavorable to the physiological activities. Wood formation, or xylogenesis, is a complex and fascinating example of an intermittent, temperature-sensitive growth process that can be investigated at several temporal scales, from daily to annual. The period in which wood formation occurs is the time window when xylem is differentiating and when environmental factors can act directly on the cells constituting the tree ring and, therefore, on wood characteristics and properties. In this chapter, the timings and dynamics of the different phases of xylem cell differentiation are described in detail. The role of some environmental factors affecting xylogenesis at short time scales, such as temperature, photoperiod, dates of snowmelt and soil nitrogen are also discussed for forest ecosystems of cold climates. Although many questions still remain unanswered, the recent findings from monitoring xylogenesis have provided valuable cues for improving the understanding of the physiology and ecology of secondary growth in trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Funada R, Ohtani J, Fukazawa K (1997) Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees 11:328–332

    Google Scholar 

  • Alvarez-Uria P, Körner C (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 21:211–218

    Google Scholar 

  • Antonova GF, Shebeko VV (1981) Applying cresyl violet in studying wood formation. Khim Drev 4:102–105

    Google Scholar 

  • Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. Trees 11:462–468

    Google Scholar 

  • Anttonen S, Manninen AM, Saranpaa P, Kainulainen P, Linder S, Vapaavuori E (2002) Effects of long-term nutrient optimisation on stem wood chemistry in Picea abies. Trees 16:386–394

    CAS  Google Scholar 

  • Bannan MW (1962) The vascular cambium and tree ring development. In: Kozlowski TT (ed) Tree growth. Ronald Press, New York

    Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2010) Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica. Trees 24:43–52

    Google Scholar 

  • Bergh J, Linder S (1999) Effects of soil warming during spring on photosynthetic recovery in boreal Picea abies stands. Glob Chang Biol 5:245–253

    Google Scholar 

  • Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Picea abies in northern and southern Sweden. For Ecol Manag 119:51–62

    Google Scholar 

  • Bernoulli M, Körner C (1999) Dry matter allocation in treeline trees. Phyton Ann Rei Bot 39:7–11

    Google Scholar 

  • Binkley D, Hogberg P (1997) Does atmospheric deposition of nitrogen threaten Swedish forests? For Ecol Manag 92:119–152

    Google Scholar 

  • Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Picea abies. Tree Physiol 25:651–660

    CAS  PubMed  Google Scholar 

  • Buckhout WA (1907) The formation of the annual ring of wood in European larch and the pine. J For 5:259–267

    Google Scholar 

  • Cairns DM, Malanson GP (1998) Environmental variables influencing the carbon balance at the alpine treeline: a modeling approach. J Veg Sci 9:679–692

    Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct Alp Res 30:1–10

    Google Scholar 

  • Campbell JL, Rustad LE, Boyer EW, Christopher SF, Driscoll CT, Fernandez IJ, Groffman PM, Houle D, Kiekbusch J, Magill AH, Mitchell MJ, Ollinger SV (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39:264–284

    CAS  Google Scholar 

  • Canovas FM, Avila C, Canton FR, Canas RA, de la Torre F (2007) Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot 58:2307–2318

    CAS  PubMed  Google Scholar 

  • Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740

    Google Scholar 

  • Cavieres LA, Rada F, Azócar A, García-Núnez C, Cabrera HM (2000) Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes. Acta Oecol 21:203–211

    Google Scholar 

  • Decker KLM, Wang D, Waite C, Scherbatskoy T (2003) Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont. Soil Sci Soc Am J 67:1234–1243

    CAS  Google Scholar 

  • Denne MP (1971) Temperature and tracheid development in Pinus sylvestris seedlings. J Exp Bot 22:362–370

    Google Scholar 

  • Denne MP (1974) Effects of light intensity on tracheid dimensions in Picea sitchensis. Ann Bot 38:337–345

    Google Scholar 

  • Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19:402–408

    Google Scholar 

  • Deslauriers A, Morin H, Begin Y (2003a) Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can J For Res 33:190–200

    Google Scholar 

  • Deslauriers A, Morin H, Urbinati C, Carrer M (2003b) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 17:477–484

    Google Scholar 

  • Deslauriers A, Anfodillo T, Rossi S, Carraro V (2007a) Using simple causal modelling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiol 27:1125–1136

    PubMed  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T (2007b) Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25:113–124

    Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambium phenology, wood formation and temperature thresholds in two contrasting years at high altitude in Southern Italy. Tree Physiol 28:863–871

    PubMed  Google Scholar 

  • Deslauriers A, Giovannelli A, Rossi S, Castro G, Fragnelli G, Traversi L (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol 29:1223–1235

    CAS  PubMed  Google Scholar 

  • Domec JC, Gartner BL (2002) How do water transport and water storage differ in coniferous earlywood and latewood? J Exp Bot 53:2369–2379

    CAS  PubMed  Google Scholar 

  • Donaldson LA (1991) Seasonal changes in lignin distribution during tracheid development in Pinus radiata D. Don. Wood Sci Technol 25:15–24

    CAS  Google Scholar 

  • Downes G, Beadle C, Worledge D (1999) Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14:102–111

    Google Scholar 

  • Downes GM, Wimmer R, Evans R (2002) Understanding wood formation: gains to commercial forestry through tree-ring research. Dendrochronologia 20:37–51

    Google Scholar 

  • Downes G, Wimmer R, Evans R (2004) Interpreting sub-annual wood and fibre property variation in terms of stem growth. In: Schmitt U, Ander P, Barnett JR, Emons AMC, Jeronimidis G, Saranpää P, Tschegg S (eds) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Drew DM, O’Grady AP, Downes G, Read J, Worledge D (2008) Daily patterns of stem size variation in irrigated and unirrigated Eucalyptus globulus. Tree Physiol 28:1573–1581

    PubMed  Google Scholar 

  • Drew DM, Downes G, Grzeskowiak V, Naidoo T (2009) Differences in daily stem size variation and growth in two hybrid eucalypt clones. Trees 23:585–595

    Google Scholar 

  • Eckstein D (2004) Change in past environments – secrets of the tree hydrosystem. New Phytol 163:1–4

    Google Scholar 

  • Eckstein D, Frisse E, Quiehl F (1977) Holzanatomische Untersuchungen zum Nachweis anthropogener Einflüsse auf die Umweltbedingungen einer Rotbuche. Angew Bot 51:47–56

    Google Scholar 

  • Ericsson T (1995) Growth and shoot-root ratio of seedlings in relation to nutrient availability. Plant Soil 168:205–214

    Google Scholar 

  • Fahn A, Werker E (1990) Seasonal cambial activity. In: Iqbal M (ed) The vascular cambium. Wiley, New York

    Google Scholar 

  • Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels size of Castanea sativa record temperature before their formation. New Phytol 173:562–570

    PubMed  Google Scholar 

  • Ford ED, Robards AW, Piney MD (1978) Influence of environmental factors on cell production and differentiation in the earlywood of Picea sitchensis. Ann Bot 42:683–692

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, New York

    Google Scholar 

  • Fritts HC, Fritts EC (1955) A new dendrograph for recording radial changes of a tree. For Sci 1:271–276

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    CAS  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Picea abies compared with maximum density and ring width. Trees 14:409–414

    Google Scholar 

  • Giovannelli A, Deslauriers A, Fragnelli G, Scaletti L, Castro G, Rossi S, Crivellaro A (2007) Evaluation of drought response of two poplar clones (Populus x canadensis Mönch ‘I-214’ and P. deltoides Marsh. ‘Dvina’) through high resolution analysis of stem growth. J Exp Bot 58:2673–2683

    CAS  PubMed  Google Scholar 

  • Goodine GK, Lavigne MB, Krasowski MJ (2008) Springtime resumption of photosynthesis in balsam fir (Abies balsamea). Tree Physiol 28:1069–1076

    CAS  PubMed  Google Scholar 

  • Graumlich LJ, Brubaker LB (1986) Reconstruction of annual temperature (1590–1979) for Longmire, Washington, derived from tree-rings. Quat Res 25:223–234

    Google Scholar 

  • Gričar J, Čufar K, Oven P, Schmitt U (2005) Differentiation of terminal latewood tracheids in silver fir trees during autumn. Ann Bot 95:959–965

    PubMed  Google Scholar 

  • Gričar J, Zupancic M, Čufar K, Koch G, Schmitt U, Oven P (2006) Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Picea abies (Picea abies). Ann Bot 97:943–951

    PubMed Central  PubMed  Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Oven P (2007) Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Picea abies. Wood Sci Technol 41:463–475

    Google Scholar 

  • Groffman PM, Hardy JP, Fisk MC, Fahey TJ, Driscoll CT (2009) Climate variation and soil carbon and nitrogen cycling processes in a northern hardwood forest. Ecosystems 12:927–943

    CAS  Google Scholar 

  • Grogan P, Jonasson S (2003) Controls on annual nitrogen cycling in the understory of a subarctic birch forest. Ecology 84:202–218

    Google Scholar 

  • Grotta AT, Gartner BL, Radosevich SR, Huso M (2005) Influence of red alder competition on cambial phenology and latewood formation in Douglas-fir. IAWA J 26:309–324

    Google Scholar 

  • Gruber A, Wieser G, Oberhuber W (2009) Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra. Tree Physiol 29:641–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruber A, Strobl S, Veit B, Oberhuber W (2010) Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiol 30:490–501

    PubMed Central  PubMed  Google Scholar 

  • Grulke NE, Balduman L (1999) Deciduous conifers: high N deposition and O3 exposure effects on growth and biomass allocation in ponderosa pine. Water Air Soil Pollut 116:235–248

    CAS  Google Scholar 

  • Hansen J, Beck E (1990) The fate and path of assimilation products in the stem of 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 4:16–21

    Google Scholar 

  • Hansen J, Beck E (1994) Seasonal changes in the utilization and turnover of assimilation products in 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 8:172–182

    Google Scholar 

  • Hansen J, Türk R, Vogg G, Heim R, Beck E (1997) Conifer carbohydrate physiology: updating classical views. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees: contributions to modern tree physiology. Backhuys Publishers, Leiden

    Google Scholar 

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    PubMed  Google Scholar 

  • Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98:361–374

    CAS  Google Scholar 

  • Hyvonen R, Persson T, Andersson S, Olsson B, Agren GI, Linder S (2008) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89:121–137

    Google Scholar 

  • James JC, Grace J, Hoad SP (1994) Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. J Ecol 82:297–306

    Google Scholar 

  • Jarvis P, Linder S (2000) Constraints to growth of boreal forests. Nature 405:904–905

    CAS  PubMed  Google Scholar 

  • Kaakinen S, Jolkkonen A, Iivonen S, Vapaavuori E (2004) Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season. Tree Physiol 24:707–719

    CAS  PubMed  Google Scholar 

  • Kaakinen S, Saranpaa P, Vapaavuori E (2007) Effects of growth differences due to geographic location and N-fertilisation on wood chemistry of Picea abies. Trees 21:131–139

    Google Scholar 

  • Kaczka RJ, Deslauriers A, Morin H (2010) High-precision dating of debris-flow events within the growing season. In: Stoffel M, Bollschweiler M, Butler DR, Luckman BH (eds) Tree rings and natural hazards: a state of the art. Springer, Dordrecht/Heidelberg

    Google Scholar 

  • Kielland K, McFarland JW, Ruess RW, Olson K (2007) Rapid cycling of organic nitrogen in taiga forest ecosystems. Ecosystems 10:360–368

    CAS  Google Scholar 

  • Knudson L (1913) Observations on the inception, season, and duration of cambium development in the American larch [Larix laricina (Du Roi) Koch.]. Bull Torrey Bot Club 40:271–293

    Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Google Scholar 

  • Körner C, Hoch G (2006) A test of treeline theory on a montane permafrost island. Arct Antarct Alp Res 38:113–119

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Google Scholar 

  • Kostiainen K, Kaakinen S, Saranpaa P, Sigurdsson BD, Linder S, Vapaavuori E (2004) Effect of elevated [CO2] on stem wood properties of mature Picea abies grown at different soil nutrient availability. Glob Chang Biol 10:1526–1538

    Google Scholar 

  • Kozlowski TT, Winget CH (1964) Diurnal and seasonal variation in radii of tree stems. Ecology 45:149–155

    Google Scholar 

  • Kutscha NP, Hyland F, Schwarzmann JM (1975) Certain seasonal changes in Balsam fir cambium and its derivatives. Wood Sci Technol 9:175–188

    Google Scholar 

  • Lavigne MB, Little CHA, Riding RT (2004) Changes in stem respiration rate during cambial reactivation can be used to refine estimates of growth and maintenance respiration. New Phytol 162:81–93

    Google Scholar 

  • Linder S (1995) Foliar analysis for detecting and correcting nutrient imbalances in Picea abies. Ecol Bull 44:178–190

    CAS  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant Cell Environ 33:1721–1730

    PubMed  Google Scholar 

  • Makinen H, Saranpaa P, Linder S (2002) Wood-density variation of Picea abies in relation to nutrient optimization and fibre dimensions. Can J For Res 32:185–194

    Google Scholar 

  • Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Picea abies. Tree Physiol 23:959–968

    PubMed  Google Scholar 

  • Marion L, Gričar J, Oven P (2007) Wood formation in urban Norway maple trees studied by the micro-coring method. Dendrochronologia 25:97–102

    Google Scholar 

  • Meyer FD, Paulsen J, Körner C (2008) Windthrow damage in Picea abies is associated with physical and chemical stem wood properties. Trees 22:463–473

    Google Scholar 

  • Millard P, Proe MF (1992) Storage and internal cycling of nitrogen in relation to seasonal growth of Sitka spruce. Tree Physiol 10:33–43

    CAS  PubMed  Google Scholar 

  • Mork E (1928) Die Qualität des Fichtenholzes unter besonderer Rücksichtnahme auf Schleif- und Papierholz. Pap-Fabrikant 26:741–747

    CAS  Google Scholar 

  • Moser L, Fonti P, Buentgen U, Franzen J, Esper J, Luterbacher J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233

    PubMed  Google Scholar 

  • Nizinski JJ, Saugier B (1988) A model of leaf budding and development for a mature Quercus forest. J Appl Ecol 25:643–652

    Google Scholar 

  • Nobuchi T, Ogata Y, Siripatanadilok S (1995) Seasonal characteristics of wood formation in Hopea odorata and Shorea henryana. IAWA J 16:361–369

    Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60:1927–1937

    CAS  PubMed  Google Scholar 

  • Oribe Y, Kubo T (1997) Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers. Tree Physiol 17:81–87

    PubMed  Google Scholar 

  • Oribe Y, Funada R, Shibagaki M, Kubo T (2001) Cambial reactivation in locally heated stems of the evergreen conifer Abies sachalinensis (Schmidt) masters. Planta 212:684–691

    CAS  PubMed  Google Scholar 

  • Oribe Y, Funada R, Kubo T (2003) Relationships between cambial activity, cell differentiation and the localisation of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) masters. Trees 17:185–192

    Google Scholar 

  • Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Picea abies (Picea abies). Tree Physiol 18:811–816

    PubMed  Google Scholar 

  • Piper FI, Cavieres LA, Reyes-Díaz M, Corcuera LJ (2006) Carbon sink limitation and frost tolerance control performance on the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile. Plant Ecol 185:29–39

    Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purnell B (2003) To every thing there is a season. Science 301:325

    CAS  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    CAS  Google Scholar 

  • Reich PB, Grigal DF, Aber JD, Gower ST (1997) Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78:335–347

    Google Scholar 

  • Reich PB, Walters MB, Tjoelker MG, Vanderklein D, Buschena C (1998) Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct Ecol 12:395–405

    Google Scholar 

  • Rossi S, Deslauriers A (2007a) Intra-annual time scales in tree rings. Dendrochronologia 25:75–77

    Google Scholar 

  • Rossi S, Deslauriers A (2007b) Scale temporali d’azione di temperatura e fotoperiodo sulla xilogenesi al limite superiore del bosco. Forest 4:6–10

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007c) Evidence of threshold temperatures for xylogenesis in conifers at high altitude. Oecologia 152:1–12

    PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:1–7

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T (2006a) Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J 27:383–394

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006b) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 169:279–290

    PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008a) Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208

    PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Gričar J, Seo J-W, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008b) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707

    Google Scholar 

  • Rossi S, Simard S, Deslauriers A, Morin H (2009a) Wood formation in Abies balsamea seedlings subjected to artificial defoliation. Tree Physiol 29:551–558

    PubMed  Google Scholar 

  • Rossi S, Simard S, Rathgeber CBK, Deslauriers A, De Zan C (2009b) Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees 23:85–93

    Google Scholar 

  • Rossi S, Morin H, Deslauriers A, Plourde P-Y (2010a) Predicting xylem phenology in black spruce under climate warming. Glob Chang Biol 17:614–625

    Google Scholar 

  • Rossi S, Morin H, Tremblay M-J (2010b) Growth and productivity of black spruce (Picea mariana) belonging to the first cohort in stands within and north of the commercial forest in Quebec, Canada. Ann For Sci 67:807–816

    Google Scholar 

  • Running SW, Reid CP (1980) Soil temperature influences on root resistance of Pinus contorta seedlings. Plant Physiol 65:635–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fenn 38:167–178

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment. Dendroecology. Swiss Federal Institute for Forest, Snow and Landscape, Haupt, Berne/Stuttgart/Vienna

    Google Scholar 

  • Seo J-W, Eckstein D, Schmitt U (2007) The pinning method: from pinning to data preparation. Dendrochronologia 25:79–86

    Google Scholar 

  • Seo J-W, Eckstein D, Jalkanen R, Rickbusch S, Schmitt U (2008) Estimating the onset of cambial activity of Scots pine in northern Finland by means of the heat-sum approach. Tree Physiol 28:105–112

    PubMed  Google Scholar 

  • Shönenberger W, Frey W (1988) Untersuchungen zur Ökologie und Technik der Hochlagenaufforstung. Forschungsergebnisse aus dem Lawinenanrissgebiet Stillberg. Schweiz Z Forstwes 139:735–820

    Google Scholar 

  • Steinaker DF, Wilson SD (2008) Phenology of the roots and leaves in forest and grassland. J Ecol 29:1222–1229

    Google Scholar 

  • Steinaker DF, Wilson SD, Peltzer DA (2010) Asynchronicity in root and shoot phenology in grasses and woody plants. Glob Change Biol 16:2241–2251

    Google Scholar 

  • Stern KR, Bidlack J, Jansky S (2003) Introductory plant biology. McGraw Hill, New York

    Google Scholar 

  • Stevens GC, Fox JF (1991) The causes of treeline. Ann Rev Ecol Syst 22:177–191

    Google Scholar 

  • Stockfors J, Linder S (1998) Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Picea abies trees. Tree Physiol 18:155–166

    PubMed  Google Scholar 

  • Sveinbjörnsson B (2000) North American and European treelines: external forces and internal processes controlling position. Ambio 29:388–395

    Google Scholar 

  • Szeicz JM, MacDonald GM (1994) Age-dependent tree-ring growth responses of subarctic white spruce to climate. Can J For Res 24:120–132

    Google Scholar 

  • Szeicz JM, MacDonald GM (1995) Dendroclimatic reconstruction of summer temperatures in northwestern Canada since A.D. 1638 based on age-dependent modeling. Quat Res 44:257–266

    Google Scholar 

  • Thibeault-Martel M, Krause C, Morin H, Rossi S (2008) Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Ann Bot 102:667–674

    PubMed Central  PubMed  Google Scholar 

  • Turcotte A, Morin H, Krause C, Deslauriers A, Thibeault-Martel M (2009) The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agric For Meteorol 149:1403–1409

    Google Scholar 

  • Turner H, Streule A (1983) Wurzelwachstum und Sprossentwicklung junger Koniferen im Klimastress der alpinen Waldgrenze, mit Berücksichtigung von Mikroklima, Photosynthese und Stoffproduktion. In: Böhm W, Kutschera L, Lichtenegger E (eds) Wurzelökologie und Ihre Nutzanwendung. Irding, Gumpenstein

    Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol 125:2029–2039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaganov EA (1990) The tracheidogram method in tree-ring analysis and its application. In: Cook R, Kairiukstis L (eds) Methods of dendrochronology. Kluwer, Dordrecht

    Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151

    CAS  Google Scholar 

  • van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112

    Google Scholar 

  • Vincent LA, Mekis E (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos Ocean 44:177–193

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea – how can it occur. Biogeochemistry 13:87–115

    Google Scholar 

  • Weintraub MN, Schimel JP (2005) The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. Biogeochemistry 73:359–380

    CAS  Google Scholar 

  • Wimmer R, Downes GM, Evans R (2002) High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Ann For Sci 59:519–524

    Google Scholar 

  • Wodzicki TJ (1971) Mechanism of xylem differentiation in Pinus silvestris L. J Exp Bot 22:670–687

    Google Scholar 

  • Wolter EK (1968) A new method for marking xylem growth. For Sci 14:102–104

    Google Scholar 

  • Yang RC, Wang EIC, Micko MM (1988) Effects of fertilisation on wood density and tracheid length of 70-year-old lodgepole pine in west-central Alberta. Can J For Res 18:954–956

    Google Scholar 

  • Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implication towards a growth mechanism. J Exp Bot 57:1445–1459

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rossi, S., Deslauriers, A., Lupi, C., Morin, H. (2014). Control over Growth in Cold Climates. In: Tausz, M., Grulke, N. (eds) Trees in a Changing Environment. Plant Ecophysiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9100-7_9

Download citation

Publish with us

Policies and ethics