Advertisement

Forest Trees Under Air Pollution as a Factor of Climate Change

  • Rainer MatyssekEmail author
  • Alessandra R. Kozovits
  • Jörg-Peter Schnitzler
  • Hans Pretzsch
  • Jochen Dieler
  • Gerhard Wieser
Chapter
Part of the Plant Ecophysiology book series (KLEC, volume 9)

Abstract

Air pollution and climate change are inherently linked to each other. After introducing into the presently prevalent air pollutants and their relevance for forest tree and ecosystem performance, the account focuses on nitrogen deposition and tropospheric ozone (O3), the latter being regarded as potentially most detrimental to vegetation, and hence, as negating carbon sink strength and storage. Mechanisms of O3 action in trees and stands are highlighted, stressing interactions with other abiotic and biotic factors, including volatile organic compounds, as a fundamental pre-requisite for understanding O3 effects. O3 is emphasized as a globally effective agent of climate change, regarding relevance for forest productivity, in particular, at hot spots of air pollution in the southern hemisphere, prognosticated for the upcoming decades. Adaptation capacities of forest trees are discussed in view of the rapidity in the progression of environmental change.

Keywords

Biomass Burning Monoterpene Emission BVOC Emission Adult Beech Aspen Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntsen G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypothesis revisited. BioScience 48:921–934Google Scholar
  2. Akimoto H (2003) Global air quality and pollution. Science 302:1716PubMedGoogle Scholar
  3. Alonso R, Elvira S, Castillo FJ, Gimeno BS (2001) Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell Environ 24:905–916Google Scholar
  4. Alscher RG, Amundson RG, Cumming JR, Fellows S, Fincher J, Rubin G, Van Leuken P, Weinstein LH (1989) Seasonal changes in pigments, carbohydrates and growth of red spruce as affected by ozone. New Phytol 113:211–223Google Scholar
  5. Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228Google Scholar
  6. Andersen CP, Rygiewicz PT (1991) Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities. Environ Pollut 73:217–244PubMedGoogle Scholar
  7. Andersen CP, Scagel CF (1997) Nutrient availability alters belowground respiration of ozone-exposed ponderosa pine. Tree Physiol 17:377–387PubMedGoogle Scholar
  8. Andersen CP, Hogsett WE, Wessling R, Plocher M (1991) Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure. Can J For Res 21:1288–1291Google Scholar
  9. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342PubMedGoogle Scholar
  10. Atkinson R, Arey J (1998) Atmospheric chemistry of biogenic organic compounds. Account Chem Res 31:574–583Google Scholar
  11. Bahnweg G, Heller W, Stich S, Knappe C, Betz G, Heerdt C, Kehr RD, Ernst D, Langebartels C, Nunn AJ, Rothenburger J, Schubert R, Wallis P, Muller-Starck G, Werner H, Matyssek R, Sandermann H (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669PubMedGoogle Scholar
  12. Barbo DN, Chappelka AH, Somers GL, Miller-Goodman MS, Stolte K (1998) Diversity of an early successional plant community as influenced by ozone. New Phytol 138:653–662Google Scholar
  13. Barbo DN, Chappelka AH, Somers GL, Miller-Goodman MS, Stolte K (2002) Ozone impacts on loblolly pine (Pinus taeda L.) grown in a competitive environment. Environ Pollut 116:27–36PubMedGoogle Scholar
  14. Bardossy A, Caspary HJ (1990) Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor Appl Climatol 42:155–167Google Scholar
  15. Barnes JD, Eamus D, Brown KA (1990a) The influence of ozone, acid mist and soil nutrient status on Norway spruce (Picea abies (L.) Karst): I. Plant-water relations. New Phytol 114:713–720Google Scholar
  16. Barnes JD, Eamus D, Brown KA (1990b) The influence of ozone, acid mist and soil nutrient status on Norway spruce (Picea abies (L.) Karst): II. Photosynthesis, dark respiration and soluble carbohydrates of trees during late autumn. New Phytol 115:149–156Google Scholar
  17. Barnes JD, Pfirrmann T, Steiner K, Lütz C, Busch U, Küchenhoff H, Payer H-D (1995) Effects of elevated CO2, O3, and K deficiency on Norway spruce (Picea abies [L.] Karst.). II. Seasonal changes in photosynthesis and non-structural carbohydrate content. Plant Cell Environ 18:1345–1357Google Scholar
  18. Bell N, Heard DE, Pilling MJ, Tomlin AS (2003) Atmospheric lifetime as a probe of radical chemistry in the boundary layer. Atmos Environ 37:2193–2205Google Scholar
  19. Bennett JP, Rassat P, Berrang P, Karnosky DF (1992) Relationships between leaf anatomy and ozone sensitivity of Fraxinus pennsylvanica Marsh. and Prunus serotina Ehrh. J Exp Bot 32:33–41Google Scholar
  20. Bertschi IT, Jaffe DA (2005) Long-range transport of ozone, carbon monoxide, and aerosols in the NE Pacific troposphere during the summer of 2003: observations of smoke plumes from Asian boreal fires. J Geophys Res 110:D05303Google Scholar
  21. Bielenberg DG, Lynch JP, Pell EJ (2001) A decline in nitrogen availability affects plant response to ozone. New Phytol 151:413–425Google Scholar
  22. Biesenthal TA, Wu TAQ, Shepson PB, Wiebe HA, Anlauf KG, MacKay GI (1997) A study of relationships between isoprene, its oxidation products, and ozone, in the lower Fraser valley, BC. Atmos Environ 31:2049–2058Google Scholar
  23. Blande JD, Holopainen JK, Li T (2010) Air pollution impedes plant-to-plant communication by volatiles. Ecol Lett 13:1172–1181PubMedGoogle Scholar
  24. Blumenröther MC, Löw M, Matyssek R, Orwald W (2007) Flux-based response of sucrose and starch in leaves of adult beech trees (Fagus sylvatica L.) under chronic free-air O3 fumigation. Plant Biol 9:207–214PubMedGoogle Scholar
  25. Boian C, Kirchhoff VWJH (2005) Surface ozone enhancements in the south of Brazil owing to large-scale air mass transport. Atmos Environ 39:6140–6146Google Scholar
  26. Bonello P, Heller W, Sandermann H (1993) Ozone effects on root-disease susceptibility and defence responses in mycorrhizal and non-mycorrhizal seedlings of Scots pine (Pinus sylvestris L.). New Phytol 124:653–663Google Scholar
  27. Bowman DM, Balch JS, Artaxo JK, Bond P, Carlson WJ, Cochrane JM, D’Antonio MA, DeFries CM, Doyle RS, Harrison JC, Johnston SP, Keeley FH, Krawchuk JE, Kull MA, Marston CA, Moritz JB, Prentice MA, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324:481–484PubMedGoogle Scholar
  28. Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254PubMedGoogle Scholar
  29. Broadmeadow MSJ, Heath J, Randle TJ (1999) Environmental limitations to O3 uptake – some key results from young trees growing at elevated CO2 concentrations. Water Air Soil Pollut 116:99–310Google Scholar
  30. Bulbovas P, Moraes RM, Rinaldi MCS, Cunha AL, Delitti WBC, Domingos M (2010) Leaf antioxidant fluctuations and growth responses in saplings of Caesalpinia echinata Lam. (Brazilwood) under an urban stressing environment. Ecotox Environ Safe 73:664–670Google Scholar
  31. Calatayud V, Marco F, Cervero J, Sánchez-Peña G, Sanz MJ (2010) Contrasting ozone sensitivity in related evergreen and deciduous shrubs. Environ Pollut 158:3580–3587PubMedGoogle Scholar
  32. Ceulemans R, Janssens IA, Jach ME (1999) Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. Ann Bot 84:577–590Google Scholar
  33. Chappelka AH, Kush JS, Meldahl RS, Lockaby BG (1990) An ozone-low temperature interaction in loblolly pine (Pinus taeda L.). New Phytol 114:721–726Google Scholar
  34. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Gruenwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–534PubMedGoogle Scholar
  35. Coleman MD, Dickson RE, Isebrands JG, Karnosky DF (1995) Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiol 15:721–726Google Scholar
  36. De Vries W, Posch M (2011) Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900–2050. Environ Pollut 159:2289–2299PubMedGoogle Scholar
  37. Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49:2106–2116Google Scholar
  38. Dentener F, Stevenson D, Ellingsen K, van Noije T, Schultz M, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Bouwman L, Butler T, Cofala J, Collins B, Drevet J, Doherty R, Eickhout B, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen ISA, Josse B, Lawrence M, Krol M, Lamarque JF, Montanaro V, Muller JF, Peuch VH, Pitari G, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage NH, Shindell D, Strahan S, Szopa S, Sudo K, Van Dingenen R, Wild O, Zeng G (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40:3586–3594PubMedGoogle Scholar
  39. Derwent RG, Stevenson DS, Collins WJ, Johnson CE (2004) Intercontinental transport and the origins of the ozone observed at surface sites in Europe. Atmos Environ 38:1891–1901Google Scholar
  40. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the cry for help. Trends Plant Sci 15:167–175PubMedGoogle Scholar
  41. Dizengremel P, Le Thiec D, Hasenfratz-Sauder MP, Vaultier MN, Bagard M, Jolivet Y (2009) Metabolic-dependent changes in plant cell redox power after ozone exposure. Plant Biol 11:35–42PubMedGoogle Scholar
  42. Durka W, Schulze ED, Gebauer G, Voerkelius S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767Google Scholar
  43. Einig W, Lauxmann U, Hauch B, Hampp R, Landolt W, Maurer S, Matyssek R (1997) Ozone-induced accumulation of carbohydrates changes enzyme activities of carbohydrate metabolism in birch leaves. New Phytol 137:673–680Google Scholar
  44. Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, van Tienhoven M, de Bauer LI, Domingos M (2001) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130:107–118Google Scholar
  45. Ericsson T, Rytter L, Vapaavuori E (1996) Physiology and allocation in trees. Biomass Bioenergy 11:115–127Google Scholar
  46. Fabian P (2002) Leben im Treibhaus – Unser Klimasystem und was wir daraus machen. Springer, Berlin, p 258Google Scholar
  47. Fiore AM, Jacob DJ, Bey I, Yantosca RM, Field BD, Fusco AC, Wilkinson JG (2002) Background ozone over the United States in summer: origin, trend, and contribution to pollution episodes. J Geophys Res 107:D4275Google Scholar
  48. Fontaine V, Cabané M, Dizengremel P (2003) Regulation of phosphoenolpyruvate carboxylase in Pinus halepensis needles submitted to ozone and water stress. Physiol Plant 117:445–452PubMedGoogle Scholar
  49. Fowler D, Amann M, Anderson R, Ashmore M, Cox P, Depledge M, Derwent D, Grennfelt P, Hewitt N, Hov O, Jenkin M, Kelly F, Liss P, Pilling M, Pyle J, Slingo J, Stefenson D (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. The Royal Society Policy DocumentGoogle Scholar
  50. Foyer CH, Lelandais M, Edwards EA, Mullineaux PM (1991) The role of ascorbate in plants, interactions with photosynthesis, and regulatory significance. In: Pell E, Steffen K (eds) Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, RockvilleGoogle Scholar
  51. Fredericksen TS, Joyce BJ, Skelly JM, Steiner KC, Kolb TE, Kouterick KB, Savage JE, Snyder KR (1995) Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees. Environ Pollut 89:273–283PubMedGoogle Scholar
  52. Fredericksen TS, Skelly JM, Steiner KC, Kolb TE, Kouterick KB (1996a) Size-mediated foliar response to ozone in black cherry trees. Environ Pollut 91:53–63PubMedGoogle Scholar
  53. Fredericksen TS, Skelly JM, Snyder KR, Steiner KC, Kolb TE (1996b) Predicting ozone uptake from meteorological and environmental variables. J Air Waste Manage Assoc 46:464–469Google Scholar
  54. Frieldingstein P, Fung I, Holland E, John J, Brasseur G, Erickson D, Schimel D (1005) On the contribution of CO2 fertilization to the missing biospheric sink. Glob Biogeochem Cycl 9:541–556Google Scholar
  55. Fuentes JD, Lerdau M, Atkinson R, Baldocchi, Bottenheim JW, Ciccioli P, Lamp C, Geron C, Gu L, Gunether A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Meteorol Soc 81:1537–1575Google Scholar
  56. Furlan CM, Moraes RM, Bulbovas P, Domingos M, Salatino A, Sanz MJ (2007) Psidium guajava ‘Paluma’ (the guava plant) as a new bio-indicator of ozone in the tropics. Environ Pollut 147:691–695PubMedGoogle Scholar
  57. Furlan CM, Moraes RM, Bulbovas P, Sanz MJ, Domingos M, Salatino A (2008) Tibouchina pulchra (Cham.) Cogn., a native Atlantic forest species, as a bio-indicator of ozone: visible injury. Environ Pollut 152:361–365PubMedGoogle Scholar
  58. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226Google Scholar
  59. Gehring CA, Cobb NS, Whitman TG (1997) Three way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines. Amer Nat 149:824–841Google Scholar
  60. Gerant D, Podor M, Grieu P, Afif D, Cornu S, Morabito D, Banvoy J, Robin C, Dizengremel P (1996) Carbon metabolism, enzyme activities and carbon partitioning in Pinus halepensis Mill. to mild drought and ozone. J Plant Physiol 148:142Google Scholar
  61. Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11Google Scholar
  62. Gloudemans AMS, Krol MC, Meirink JF, de Laat ATJ, van der Werf GR, Schrijver H, van den Broek MMP, Aben I (2006) Evidence for long-range transport of carbon monoxide in the Southern Hemisphere from SCIAMACHY observations. Geophys Res Lett 33:L16807Google Scholar
  63. Grams TEE, Andersen CP (2007) Competition for resources in trees: physiological versus morphological plasticity. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer-Verlag, BerlinGoogle Scholar
  64. Grams TEE, Matyssek R (1999) Elevated CO2 counteracts the limitation by chronic ozone exposure on photosynthesis in Fagus sylvatica L.: comparison between chlorophyll fluorescence and leaf gas exchange. Phyton Ann Rei Bot 39:31–40Google Scholar
  65. Grams TEE, Matyssek R (2010) Stable isotope signatures reflect competitiveness between trees under changed CO2/O3 regimes. Environ Pollut 158:1036–1042PubMedGoogle Scholar
  66. Grams TEE, Anegg S, Häberle K-H, Langebartels C, Matyssek R (1999) Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytol 144:95–107Google Scholar
  67. Grams TEE, Kozovits AR, Häberle K-H, Matyssek R, Dawson TE (2007) Combining δ13C and δ18O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. Plant Cell Environ 30:1023–1034PubMedGoogle Scholar
  68. Grebenc T, Kraigher H (2007) Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biol 9:279–287PubMedGoogle Scholar
  69. Greitner CS, Winner WE (1989) Nutrient effects on responses of willow and alder to ozone. In: Olson RK, Lefohn AS (eds) Transaction: effects of air pollution on Western Forests. Air and Waste Management Association, AnaheimGoogle Scholar
  70. Grulke NE, Balduman L (1999) Deciduous conifers: high N deposition and O3 exposure effects on growth and biomass allocation in Ponderosa pine. Water Air Soil Pollut 116:235–248Google Scholar
  71. Grulke NE, Johnson R, Esperanza A, Jones D, Nguyen T, Posch S, Tausz M (2003) Canopy transpiration of Jeffrey pine in mesic and xeric microsites: O3 uptake and injury response. Trees 17:292–298Google Scholar
  72. Grulke NE, Minnich RA, Paine TD, Seybold SJ, Chavez DJ, Fenn ME, Riggan PJ, Dunn A (2009) Air pollution increases forest susceptibility to wildfires: a case study in the San Bernardino Mountains in Southern California. In: Bytnerowicz A, Arbaugh M, Riebau A, Andersen C (eds) Developments in environmental science, vol 8. Elsevier, Oxford/UKGoogle Scholar
  73. Guenther AB, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892Google Scholar
  74. Günthardt-Goerg MS, Matyssek R, Scheidegger C, Keller T (1993) Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentrations. Trees 7:104–114Google Scholar
  75. Haberer K, Grebenc T, Alexou M, Gessler A, Kraigher H, Rennenberg H (2007) Effects of long-term free-air ozone fumigation on δ15N and total N in Fagus sylvatica and associated mycorrhizal fungi. Plant Biol 9:242–252PubMedGoogle Scholar
  76. Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens H, Logemann E, Nürnberger T, Schmelzer E, Somssich IE, Tan J (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci U S A 100:14569–14576PubMedCentralPubMedGoogle Scholar
  77. Hättenschwieler S, Schweingruber FH, Körner C (1996) Tree ring responses to elevated CO2 and increased N deposition in Picea abies. Plant Cell Environ 19:1369–1378Google Scholar
  78. Hayes F, Mills G, Harmens H, Norris D (2007) Evidence of widespread ozone damage to vegetation in Europe (1990–2006). Programme Coordinating Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Bangor, http://www.icpvegetation.ceh.ac.uk Google Scholar
  79. Heath RL (1980) Initial events in injury to plants by air pollutants. Annu Rev Plant Physiol 31:395–401Google Scholar
  80. Heath RL, Taylor GE (1997) Physiological processes and plant responses to ozone exposure. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone, a comparison of controlled chamber and field experiments, Ecological Studies 127. Springer-Verlag, BerlinGoogle Scholar
  81. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335Google Scholar
  82. Hewitt CN, MacKenzie AR, Di Carlo P, Di Marco CF, Dorsey JR, Evans M, Fowler D, Gallagher MW, Hopkins JR, Jones CE, Langford B, Lee JD, Lewis AC, Lim SF, McQuaid J, Misztal P, Moller SJ, Monks PS, Nemitz E, Oram DE, Owen SM, Phillips GJ, Pugh TAM, Pyle JA, Reeves CE, Ryder J, Sion J, Skiba U, Stewart DJ (2009) Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc Natl Acad Sci U S A 106:18447–18451PubMedCentralPubMedGoogle Scholar
  83. Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184PubMedGoogle Scholar
  84. IPCC (2007) Climate change 2007: synthesis report. Summary for policymakers. WG1, AR4. http://ipcc-wg1.ucar.edu/wg1/wg1-report.html
  85. Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399PubMedCentralPubMedGoogle Scholar
  86. Jehnes S, Betz G, Bahnweg G, Haberer K, Sandermann H, Rennenberg H (2007) Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European Beech (Fagus sylvatica L.) trees. Plant Biol 9:253–264PubMedGoogle Scholar
  87. Josipovic M, Annegarn HJ, Kneen MA, Piernaar JJ, Piketh SJ (2010) Concentrations, distributions and critical level exceedance assessment of SO2, NO2 and O3 in South Africa. Environ Monit Assess 171:181–196PubMedGoogle Scholar
  88. Kangasjärvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036Google Scholar
  89. Karlsson PE, Medin E-L, Wickström H, Selldén G, Wallin G, Ottoson S, Skärby L (1995) Ozone and drought stress: interactive effects on the growth and physiology of Norway spruce (Picea abies L. Karst.). Water Air Soil Pollut 85:1325–1330Google Scholar
  90. Karlsson PE, Pleijel H, Karlsson GP, Medin EL, Skärby L (2000) Simulations of stomatal conductance and ozone uptake to Norway spruce saplings in open-top chambers. Environ Pollut 109:443–451PubMedGoogle Scholar
  91. Karlsson PE, Pleijel H, Simpson D (2009) Ozone exposure and impacts on vegetation in the Nordic and Baltic countries. Ambio 38:402–405PubMedGoogle Scholar
  92. Karnosky DF, Gagnon ZE, Dickson RE, Coleman MD, Lee EH, Isebrands JG (1996) Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposure of Populus tremuloides clones and seedlings. Can J For Res 26:23–37Google Scholar
  93. Karnosky DF, Mankovska B, Percy K, Dickson DE, Podila GK, Sober A, Noormets G, Hendrey MD, Coleman M, Kubiske M, Pregitzer KS, Isebrands JG (1999) Effects of tropospheric O3 on trembling aspen and interaction with CO2: results from a O3 gradient and a FACE experiment. Water Air Soil Pollut 116:311–322Google Scholar
  94. Karnosky DE, Oksanen E, Dickson RE, Isebrands JG (2001) Impacts of interacting greenhouse gases on forest ecosystems. In: Karnosky DF, Scarascia-Mugnozza G, Ceulemans R, Innes JL (eds) The impacts of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Press, WallingfordGoogle Scholar
  95. Karnosky DF, Percy KE, Xiang BX, Callan B, Noormets A, Mankovska B, Hopkin A, Sober J, Jones W, Dickson RE, Isebrands JG (2002) Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp tremuloidae). Glob Change Biol 8:329–338Google Scholar
  96. Karnosky DF, Zak D, Pregnitzer K, Awmack C, Bockheim J, Dickson R, Hendrey G, Host G, King J, Kopper B, Kruger E, Kubiske M, Lindroth R, Mattson W, McDonald E, Noormets A, Oksanen E, Parsons W, Percy K, Podila G, Riemenschneider D, Sharma P, Thakur R, Sober A, Sober J, Jones W, Anttonen S, Vapaavuori E, Manskovska B, Heilman W, Isebrands J (2003) Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct Ecol 17:289–304Google Scholar
  97. Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ 28:965–981Google Scholar
  98. Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free-Air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190PubMedGoogle Scholar
  99. Keating TW, West JJ, Farrell AE (2004) Prospects for international management of inter-continental air pollution transport. In: Stohl A (ed) The intercontinental transport of air pollution. Springer, BerlinGoogle Scholar
  100. Keller T, Häsler R (1987) The influence of a fall fumigation with ozone on the stomatal behavior of spruce and fir. Oecologia 64:284–286Google Scholar
  101. Keppler F, Hamilton JTG, Brar M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191PubMedGoogle Scholar
  102. Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler JP (2009) Methane formation in aerobic environments. Environ Chem 6:459–465Google Scholar
  103. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88Google Scholar
  104. Kiendler-Scharr A, Wildt J, Dal Maso M, Hohaus T, Kleist E, Mentel TF, Tillmann R, Uerlings R, Schurr U, Wahner A (2009) New particle formation in forests inhibited by isoprene emissions. Nature 461:381–384PubMedGoogle Scholar
  105. King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF (2005) Tropospheric ozone compromises net primary production in young stands of trembling aspen, paper birch, and sugar maple in response to elevated CO2. New Phytol 168:623–636PubMedGoogle Scholar
  106. Kitao M, Löw M, Heerd C, Grams TEE, Häberle K-H, Matyssek R (2009) Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ Pollut 157:537–544PubMedGoogle Scholar
  107. Kivimäenpää M, Sutinen S, Karlsson PE, Sellden G (2003) Cell structural changes in the needles of Norway spruce exposed to long-term ozone and drought. Ann Bot 92:779–793PubMedGoogle Scholar
  108. Klingberg J, Engardt M, Uddling J, Karlsson PE, Pleijel H (2010) Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations. Tellus A 63:174–187Google Scholar
  109. Kolb TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impact in trees. Environ Pollut 115:373–393Google Scholar
  110. Kolb TE, Fredericksen TS, Steiner KC, Skelly JM (1997) Issues in scaling tree size and age responses to ozone: a review. Environ Pollut 98:195–208Google Scholar
  111. Kopper BJ, Lindroth RL (2002) Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134:95–103PubMedGoogle Scholar
  112. Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17Google Scholar
  113. Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411PubMedGoogle Scholar
  114. Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005a) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11:1387–1401Google Scholar
  115. Kozovits AR, Matyssek R, Winkler B, Göttlein A, Blaschke H, Grams TEE (2005b) Above-ground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytol 167:181–196PubMedGoogle Scholar
  116. Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234PubMedGoogle Scholar
  117. Kronfuß G, Polle A, Tausz M, Havranek WM, Wieser G (1998) Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce [Picea abies (L.) Karst.]. Trees 12:482–489Google Scholar
  118. Kubiske ME, Quinn VS, Heilman WE, McDonald EP, Marquardt PE, Teclaw RM, Friend AL, Karnosky DF (2006) Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth. Glob Change Biol 12:1054–1068Google Scholar
  119. Kubiske ME, Quinn VS, Marquardt PE, Karnosky DF (2007) Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Plant Biol 9:342–355PubMedGoogle Scholar
  120. Kytöviita M-M, Pelloux J, Fontaine V, Botton B, Dizengremel P (1999) Elevated CO2 does not amerliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus. Physiol Plant 106:370–377Google Scholar
  121. Lal R (1999) World soils and the greenhouse effect. IGBP Newslett 37:4–5Google Scholar
  122. Landolt W, Pfenninger I, Lüthy-Krause B (1989) The effect of ozone and season on the pool sizes of cyclitols in Scots pine (Pinus sylvestris). Trees 3:85–88Google Scholar
  123. Langebartels C, Ernst D, Heller W, Lütz C, Payer H-D, Sandermann H Jr (1997) Ozone responses of trees: results from controlled chamber exposures at the GSF phytotron. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone. Springer, BerlinGoogle Scholar
  124. Langmann B, Duncan B, Textor C, Trentmann J, van der Werf GR (2009) Vegetation fire emissions and their impact on air pollution and climate. Atmos Environ 43:107–116Google Scholar
  125. Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51PubMedGoogle Scholar
  126. Laurence JA, Amundson RG, Friend AL, Pell EJ, Temple PJ (1994) Allocation of carbon in plants under stress: an analysis of the ROPIS experiment. J Environ Qual 23:412–417Google Scholar
  127. Lautner S, Ehlting B, Windeisen E, Rennenberg H, Matyssek R, Fromm J (2007) Calcium nutrition has a significant influence on wood formation in poplar. New Phytol 173:743–752PubMedGoogle Scholar
  128. Lindroth RL (2010) Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J Chem Ecol 36:2–21PubMedGoogle Scholar
  129. Lippert M, Steiner K, Payer H-D, Simons S, Langebartels C, Sandermann H Jr (1996) Assessing the impact of ozone on photosynthesis of European beech (Fagus sylvatica L.) in environmental chambers. Trees 10:268–275Google Scholar
  130. Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166PubMedGoogle Scholar
  131. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787PubMedCentralPubMedGoogle Scholar
  132. Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20:539–548Google Scholar
  133. Löw M, Häberle K-H, Warren CR, Matyssek R (2007) O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Plant Biol 9:197–206PubMedGoogle Scholar
  134. Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649PubMedGoogle Scholar
  135. Luedemann G, Winkler JB, Matyssek R, Grams TEE (2009) Contrasting ozone x pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323:47–60Google Scholar
  136. Lütz C, Anegg S, Gerant D, Alaoui-Sosse B, Gerard J, Dizengremel P (2000) Beech trees exposed to high CO2 and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity. Physiol Plant 109:252–259Google Scholar
  137. Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Grace J, Ciais P (2008) Old-growth forests as global carbon sinks. Nature 455:213–215PubMedGoogle Scholar
  138. Maier-Maercker U (1998) Image analysis of the stomatal cell walls of Picea abies (L.) Karst. in pure and ozone-enriched air. Trees 12:181–185Google Scholar
  139. Manes F, Vitale M, Donato E, Paoletti E (1998) O3 and O3 + CO2 effects on a Mediterranean evergreen broadleaf tree, Holm Oak (Quercus ilex L.). Chemosphere 36:801–806Google Scholar
  140. Mankovska B, Percy KE, Karnosky DF (2005) Impacts of greenhouse gases on epicuticular waxes of Populus tremuloides Michx.: results from an open-air exposure and a natural O3 gradient. Environ Pollut 137:580–586PubMedGoogle Scholar
  141. Manning WJ, v Tiedemann A (1995) Climate change: potential effects of increase atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–225PubMedGoogle Scholar
  142. Marscher H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20Google Scholar
  143. Matyssek R (2001) How sensitive is birch to ozone? Responses in structure and function. J For Sci 47:8–20Google Scholar
  144. Matyssek R, Innes JL (1999) Ozone – a risk factor for trees and forests in Europe? Water Air Soil Pollut 116:199–226Google Scholar
  145. Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404Google Scholar
  146. Matyssek R, Reich PB, Oren R, Winner WE (1995) Response mechanisms of conifers to air pollutants. In: Smith WK, Hinckley TH (eds) Physiological ecology of coniferous forests. Physiological Ecology Series, Academic Press, New YorkGoogle Scholar
  147. Matyssek R, Havranek WM, Wieser G, Innes JL (1997a) Ozone and the forests in Austria and Switzerland. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments, Ecological Studies 127. Springer, BerlinGoogle Scholar
  148. Matyssek R, Maurer S, Günthardt-Goerg MS, Landolt W, Saurer M, Polle A (1997b) Nutrition determines the ‘strategy’ of Betula pendula for coping with ozone stress. Phyton Ann Rei Bot 37:157–167Google Scholar
  149. Matyssek R, Agerer R, Ernst D, Munch J-C, Osswald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580PubMedGoogle Scholar
  150. Matyssek R, Le Thiec D, Löw M, Dizengremel P, Nunn AJ, Häberle K-H (2006) Interaction between drought stress and O3 stress in forest trees. Plant Biol 8:11–17PubMedGoogle Scholar
  151. Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582PubMedGoogle Scholar
  152. Matyssek R, Karnosky DF, Wieser G, Percy K, Oksanen E, Grams TEE, Kubiske M, Hanke D, Pretzsch H (2010a) Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies. Environ Pollut 158:1990–2006PubMedGoogle Scholar
  153. Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn AJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle K-H (2010b) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158:2527–2532PubMedGoogle Scholar
  154. Maurer S, Matyssek R (1997) Nutrition and the ozone sensitivity of birch (Betula pendula), II. Carbon balance, water-use efficiency and nutritional status of the whole plant. Trees 12:11–20Google Scholar
  155. Maurer S, Matyssek R, Günthhardt-Goerg MS, Landolt W, Einig W (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). I Responses at the leaf level. Trees 12:1–10Google Scholar
  156. McDonald EP, Kruger EL, Riemenschneider DE, Isebrands JG (2002) Competitive status influences tree-growth responses to elevated CO2 and O3 in aggrading aspen stands. Funct Ecol 16:792–801Google Scholar
  157. Mieville A, Granier C, Liousse C, Guillaume B, Mouillot F, Lamarque JF, Grégoire JM, Pétron G (2010) Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmos Environ 44:1469–1477Google Scholar
  158. Mikkelsen TN, Ro-Poulsen H (1995) Exposure of Norway spruce to ozone increases the sensitivity of current-year needles to photoinhibitions and desiccation. New Phytol 128:153–163Google Scholar
  159. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, WashingtonGoogle Scholar
  160. Miller PR, McBride JM (1999) Oxidant air pollution impacts in the montane forest of Southern California, Ecological Studies 134. Springer, BerlinGoogle Scholar
  161. Monks PS, Granier C, Fuzzi S, Stohl A et al (2009) Atmospheric composition change – global and regional air quality. Atmos Environ 43:5268–5350Google Scholar
  162. Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationship among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180PubMedCentralPubMedGoogle Scholar
  163. Mooney HA, Winner WE (1991) Partitioning response of plants to stress. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic, San DiegoGoogle Scholar
  164. Moraes RM, Bulbovas P, Furlan CM, Domingos M, Meirelles ST, Delitti WBC, Sanz MJ (2006) Physiological responses of saplings of Caesalpinia echinata Lam., a Brazilian tree species, under ozone fumigation. Ecotox Environ Safe 63:306–312Google Scholar
  165. Morris GA, Hersey S, Thompson AM, Pawson S, Nielsen JE, Colarco PR, McMillan WW, Stohl A, Turquety S, Warner J, Johnson BJ, Kucsera TL, Larko DE, Olrmans SJ, Witte JC (2006) Alaskan and Canadian forest fires exacerbate ozone pollution over Houston, Texas, on 19 and 20 July 2004. J Geophys Res 111:D24S03Google Scholar
  166. Muramoto CA, Lopes CFF, Lacava CIV (2003) Study of tropospheric ozone in São Paulo metropolitan region. In: A&WMA’s 96th annual conference & exhibition “Energy, economic and global challenges”, San DiegoGoogle Scholar
  167. Musselman RC, Lefohn AS, Massman WJ, Heath RL (2006) A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ 40:1869–1888Google Scholar
  168. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702Google Scholar
  169. Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148Google Scholar
  170. Nali C, Paoletti E, Marabottini R, Della Rocca G, Lorenzini G, Paolacci AR, Ciaffi M, Badiani M (2004) Ecophysiological and biochemical, strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmos Environ 38:2247–2257Google Scholar
  171. Newell RE, Evans MJ (2000) Seasonal changes in pollutant transport to the north Pacific: the relative importance of Asian and European sources. Geophys Res Lett 27:2509–2512Google Scholar
  172. Niinemets U (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecol Manag 260:1623–1639Google Scholar
  173. Nikolova P, Raspe S, Andersen C, Mainiero R, Blaschke H, Matyssek R, Häberle K-H (2009) Effects of the extreme drought in 2003 on soil respiration in a mixed Forest. Eur J For Res 128:87–98Google Scholar
  174. Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Häberle K-H (2010) Below-ground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./ Picea abies [L.] Karst). Environ Pollut 158:1071–1078PubMedGoogle Scholar
  175. Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree response to rising CO2 in experiments field: implications for the future forests. Plant Cell Environ 22:683–714Google Scholar
  176. Nunn AJ, Reiter IM, Häberle K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton Ann Rei Bot 42:105–119Google Scholar
  177. Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lütz C, Liu X, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005a) Comparison of ozone uptake and responsiveness between a phytotron study with young and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506PubMedGoogle Scholar
  178. Nunn AJ, Reiter IM, Haberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005b) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369PubMedGoogle Scholar
  179. Oksanen E (2003) Responses of selected birch (Betula pendula Roth) clones to ozone change over time. Plant Cell Environ 26:875–886PubMedGoogle Scholar
  180. Olbrich M, Gerstner E, Bahnweg G, Häberle K-H, Matyssek R, Welzl G, Ernst D (2010) Transcriptional signatures in leaves of adult European beech trees (Fagus sylvatica L.) in an experimentally enhanced free air ozone setting. Environ Pollut 158:977–982PubMedGoogle Scholar
  181. Olcese LE, Toselli BM (1998) Unexpected high levels of ozone measured in Córdoba, Argentina. J Atmos Chem 31:269–279Google Scholar
  182. Pääkkönen E, Holopainen T (1995) Influence of nitrogen supply on the response of clones of birch (Betula pendula Roth.) to ozone. New Phytol 129:595–603Google Scholar
  183. Pääkkönen E, Vahala J, Pohjolai M, Holopainen T, Kärenlampi L (1998a) Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth) are modified by water stress. Plant Cell Environ 21:671–684Google Scholar
  184. Pääkkönen E, Seppänen S, Holopainen T, Kokko H, Kärenlampi S, Kärenlampi L, Kangasjärvi J (1998b) Induction of genes for the stress proteins PR-10 and PAL in relation to growth, visible injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought. New Phytol 138:295–305Google Scholar
  185. Panek JA, Goldstein AH (2001) Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree Physiol 21:337–344PubMedGoogle Scholar
  186. Panek JA, Kurpius MR, Goldstein AH (2002) An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem. Environ Pollut 117:93–100PubMedGoogle Scholar
  187. Paoletti E (2006) Impact of ozone on Mediterranean forests: a review. Environ Pollut 144:463–474PubMedGoogle Scholar
  188. Pearson M, Mansfield TA (1993) Interacting effects of ozone and water-stress on the stomatal-resistance of Beech (Fagus sylvatica L.). New Phytol 123:351–358Google Scholar
  189. Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P (2001) Changes in Rubisco and Rubisco activate gene expression and polypeptide content in Pinus halepensis Mill. subjected to ozone and drought. Plant Cell Environ 24:123–132Google Scholar
  190. Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144PubMedGoogle Scholar
  191. Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under CO2- and O3-enriched atmospheres. Nature 420:403–407PubMedGoogle Scholar
  192. Pina JM, Moraes RM (2010) Gas exchange, antioxidants and foliar injuries in saplings of a tropical woody species exposed to ozone. Ecotox Environ Safe 73:685–691Google Scholar
  193. Pinto DM, Blande JD, Souza SR, Nerg A-M, Holopainen JK (2010) Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 36:22–34PubMedGoogle Scholar
  194. Poisson N, Kanakidou M, Crutzen PJ (2000) Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J Atmos Chem 36:157–230Google Scholar
  195. Polle A, Matyssek R, Günthardt-Goerg MS, Maurer S (2000) Defense strategies against ozone in trees: the role of nutrition. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant responses. Lewis Publishers, New YorkGoogle Scholar
  196. Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198Google Scholar
  197. Pretzsch H (1996) Growth trends in forests in Southern Germany. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in european forests. Springer, BerlinGoogle Scholar
  198. Pretzsch H, Dieler J (2010) The dependency of the size-growth relationship of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees 25:355–369Google Scholar
  199. Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070PubMedGoogle Scholar
  200. Pronos J, Merril L, Dahsten D (1999) Insects and pathogens in a pollution-stressed forest. In: Miller PR, McBride JM (eds) Oxidant air pollution impacts in the montane forest of southern California, Ecological Studies 134. Springer-Verlag, BerlinGoogle Scholar
  201. Real E, Law KS, Weinzierl B, Fiebig M, Petzold A, Wild O, Methven J, Arnold S, Stohl A, Huntrieser H, Roiger A, Schlager H, Stewart D, Avery M, Sachse G, Browell E, Ferrare R, Blake D (2007) Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic. J Geophys Res 112:D10S41Google Scholar
  202. Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91PubMedGoogle Scholar
  203. Reilly J, Paltsev S, Felzer B, Wang X, Kicklighter D, Melillo J, Prinn R, Sarofim M, Sokolov A, Wang C (2007) Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone. Ergon Policy 36:5370–5383Google Scholar
  204. Reiter IM, Haberle K-H, Nunn AJ, Heerdt C, Reitmayer H, Grote R, Matyssek R (2005) Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146:337–349PubMedGoogle Scholar
  205. Retzlaff WA, Arthur MA, Grulke NE, Weinstein DA, Gollands B (2000) Use of a single-tree simulation model to predict effects of ozone and drought on growth of a white fir tree. Tree Physiol 20:195–202PubMedGoogle Scholar
  206. Rezende FM, Furlan CM (2009) Anthocyanins and tannins in ozone-fumigated guava trees. Chemosphere 76:1445–1450PubMedGoogle Scholar
  207. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54PubMedCentralPubMedGoogle Scholar
  208. Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophy Res Lett 26:3105–3108Google Scholar
  209. Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259PubMedGoogle Scholar
  210. Sánchez-Ccoyllo OR, Ynoue YR, Martins DL, Andrade FM (2006) Impacts of ozone precursor limitation and meteorological variables on ozone concentration in Sao Paulo, Brazil. Atmos Environ 40:S552–S562Google Scholar
  211. Sandermann H Jr, Wellburn AR, Heath RL (1997) Forest decline and ozone: synopsis. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments, Ecological Studies 127. Springer, BerlinGoogle Scholar
  212. Saugier B, Roy J, Mooney HA (2001) Terrestrial global productivity. Academic, San DiegoGoogle Scholar
  213. Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436Google Scholar
  214. Scarascia-Mugnozza GE, Karnosky DF, Ceulemans R, Innes JL (2001) The impact of CO2 and other greenhouse gases on forest ecosystems: an introduction. In: Karnosky DF, Scarascia-Mugnozza G, Ceulemans R, Innes JL (eds) The impacts of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Press, WashingtonGoogle Scholar
  215. Schulze E-D, Lange OL, Oren R (1989) Forest decline and air pollution – a study of spruce (Picea abies) on acid soils, Ecological studies 77. Springer, New York, p 475Google Scholar
  216. Schulze E-D (1994) The regulation of plant transpiration: interactions of feedforward, feedback, and futile cycles. In: Schulze E-D (ed) Flux control in biological systems. Academic, New YorkGoogle Scholar
  217. Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, BerlinGoogle Scholar
  218. Schulze E-D, Luyssaert S, Ciais P, Freibauer A, Janssens IA, Soussana JF, Smith P, Grace J, Levin I, Thiruchittampalam B, Heimann M, Dolman AJ, Valentini R, Bousquet P, Peylin P, Peters W, Roedenbeck C, Etiope G, Vuichard N, Wattenbach M, Nabuurs GJ, Poussi Z, Nieschulze J et al (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat Geosci 2:842–850Google Scholar
  219. Schupp R, Rennenberg H (1988) Diurnal changes in the glutathione content of spruce needles (Picea abies L.). Plant Sci 57:113–117Google Scholar
  220. Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006PubMedCentralPubMedGoogle Scholar
  221. Sheppard LJ (1994) Causal mechanisms by which sulphate, nitrate and acidity influence frost hardiness in red spruce. Review and hypothesis. New Phytol 127:69–82Google Scholar
  222. Siegwolf RTW, Matyssek R, Saurer M, Maurer S, Günthardt-Goerg MS, Schmutz P, Bucher JB (2001) Stable isotope analysis reveals differential effects of soil nitrogen and nitrogen dioxide on the water-use efficiency in hybrid poplar leaves. New Phytol 149:233–246Google Scholar
  223. Singh HB, Herlth D, Kolyer R, Chatfield R, Viezee W, Salas LJ, Chen Y, Bradshaw JD, Sandholm ST, Talbot R, Gregory GL, Anderson B, Sachse GW, Browell E, Bachmeier AS, Blake DR, Heikes B, Jacob D, Fuelberg HE (1996) Impact of biomass burning emissions on the composition of the South Atlantic troposphere: reactive nitrogen and ozone. J Geophys Res 101:24203–24219Google Scholar
  224. Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–795PubMedGoogle Scholar
  225. Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998) Impacts of ozone on forests: a European perspective. New Phytol 139:109–122Google Scholar
  226. Sowden M, Zunckel M, van Tienhoven AM (2007) Assessment of the status of biogenic organic emissions and impacts on air quality in southern Africa. Tellus 59B:535–541Google Scholar
  227. Spinnler D, Egh P, Körner C (2002) Four-year growth dynamics of beech-spruce model ecosystems under CO2 enrichment on two different forest soils. Trees 16:423–436Google Scholar
  228. Stockwell WR, Kramm G, Scheel HE, Mohnen VA, Seiler W (1997) Ozone formation, destruction and exposure in Europe and the United States. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone, a comparison of controlled chamber and field experiments, Ecological Studies 127. Springer, BerlinGoogle Scholar
  229. Stohl A, Eckhardt S, Forster C, James P, Spichtinger N (2002) On the pathways and timescales of intercontinental air pollution transport. J Geophys Res 107:D4684Google Scholar
  230. Takemoto BK, Bytnerowicz A, Fenn ME (2001) Current and future effects of ozone and atmospheric nitrogen deposition on California’s mixed conifer forests. Forest Ecol Manag 144:159–173Google Scholar
  231. Teixeir EC, de Santana ER, Wiegand F, Fachel J (2009) Measurement of surface ozone and its precursors in an urban area in South Brazil. Atmos Environ 43:2213–2220Google Scholar
  232. Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere: probable past and future change. Science 256:1157–1165PubMedGoogle Scholar
  233. Tjoelker MG, Luxmoore RJ (1991) Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings. New Phytol 119:69–81Google Scholar
  234. Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1995) Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. Plant Cell Environ 18:895–905Google Scholar
  235. Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K+ channels implicated in stomatal opening. Proc Natl Acad Sci U S A 96:13577–13582PubMedCentralPubMedGoogle Scholar
  236. Tunved P, Hansson HC, Kerminen VM, Ström J, Dal Maso M, Lihavainen H, Viisanen Y, Aalto PP, Komppula M, Kulmala M (2006) High natural aerosol loading over boreal forests. Science 312:261–263PubMedGoogle Scholar
  237. Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485PubMedGoogle Scholar
  238. Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618Google Scholar
  239. Van Tienhoven AM, Scholes MC (2003) Air pollution impacts on vegetation in South Africa. In: Emberson LD, Ashmore MR, Murray F (eds) Air pollution impacts on crops and forests: a global assessment. Imperial College Press, LondonGoogle Scholar
  240. Vanderheyden D, Skelly J, Innes J, Hug C, Zhang J, Landolt W, Bleuler P (2001) Ozone exposure thresholds and foliar injury on forest plants in Switzerland. Environ Pollut 111:321–331PubMedGoogle Scholar
  241. Vingarzan R (2004) A review of surface O3 background levels and trends. Atmos Environ 38:3431–3442Google Scholar
  242. Volin JC, Tjoelker MG, Oleksyn J, Reich PB (1993) Light environment alters response to ozone stress in Acer saccharum Marsh. and hybrid Populus L. seedlings. II. Diagnostic gas exchange and leaf chemistry. New Phytol 124:637–646Google Scholar
  243. Volin JC, Reich PB, Givnish T (1998) Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytol 138:315–325Google Scholar
  244. Wamelink GWW, Wieggers HJJ, Reinds GJ, Kros J, Mol-Dijkstra JP, van Oijen M, de Vries W (2009) Modelling impacts of changes in carbon dioxide concentration, climate and nitrogen deposition on carbon sequestration by European forests and forest soils. Forest Ecol Manag 258:1794–1805Google Scholar
  245. Wang H, Jacob DJ, Le Sager P, Streets DG, Park RJ, Gilliland AB, van Donkelaar A (2009) Surface ozone background in the United States: Canadian and Mexican pollution influences. Atmos Environ 43:1310–1319Google Scholar
  246. Werner H, Fabian P (2002) Free-air fumigation of mature trees. Environ Sci Pollut Res 9:117–121Google Scholar
  247. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–943PubMedGoogle Scholar
  248. Wiedinmyer C, Tie XX, Guenther A, Neilson R, Granier C (2006) Future changes in biogenic isoprene emissions: how might they affect regional and global atmospheric chemistry? Earth Interact. doi: 10.1175/EI174.1, 10Google Scholar
  249. Wieser G (1999) Evaluation of the impact of ozone on conifers in the Alps: a case study on spruce, pine and larch in the Austrian Alps. Phyton Ann Rei Bot 39:241–252Google Scholar
  250. Wieser G, Havranek WM (1993) Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7:227–232Google Scholar
  251. Wieser G, Havranek WM (1995) Environmental control of ozone uptake in Larix decidua Mill : a comparison between different altitudes. Tree Physiol 15:253–258PubMedGoogle Scholar
  252. Wieser G, Matyssek R (2007) Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees. New Phytol 174:7–9PubMedGoogle Scholar
  253. Wieser G, Tausz M (eds) (2007) Trees at their upper limit. Tree life limitation at the alpine timberline, Springer Series Plant Ecophysiology. Springer, DordrechtGoogle Scholar
  254. Wieser G, Tegischer K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2002) Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol 22:583–590PubMedGoogle Scholar
  255. Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525PubMedGoogle Scholar
  256. Winwood J, Pate AE, Price J, Hanke DE (2007) Effects of long-term, free-air ozone fumigation on the cytokinin content of mature beech trees. Plant Biol 9:265–278PubMedGoogle Scholar
  257. Wipfler P, Seifert T, Heerdt C, Werner H, Pretzsch H (2005) Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation. Plant Biol 7:611–618PubMedGoogle Scholar
  258. Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162PubMedGoogle Scholar
  259. Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob Change Biol 15:396–424Google Scholar
  260. Wolfenden J, Mansfield TA (1991) Physiological disturbances in plants caused by air pollutants. Proc Roy Soc Edinburgh 97B:117–138Google Scholar
  261. Yamaguchi M, Watanabe M, Matsumura H, Kohno Y, Izuta T (2010) Effects of ozone on nitrogen metabolism in the leaves of Fagus crenata seedlings under different soil nitrogen loads. Trees 24:175–184Google Scholar
  262. Zunckel M, Venjonoka K, Pienaar JJ, Brunke E-G, Pretorius O, Koosailee A, Raghunandan A, van Tienhoven AM (2004) Surface ozone over southern Africa: synthesis of monitoring results during the Cross Border Air Pollution Impact Assessment Project. Atmos Environ 38:6139–6147Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rainer Matyssek
    • 1
    Email author
  • Alessandra R. Kozovits
    • 2
  • Jörg-Peter Schnitzler
    • 3
  • Hans Pretzsch
    • 4
  • Jochen Dieler
    • 4
  • Gerhard Wieser
    • 5
  1. 1.Ecophysiology of PlantsTechnische Universität MünchenFreisingGermany
  2. 2.Department of Biodiversity, Evolution and EnvironmentFederal University of Ouro PretoOuro PretoBrazil
  3. 3.Department of Environmental EngineeringInstitute of Biochemical Plant Pathology, Helmholtz Zentrum MünchenNeuherbergGermany
  4. 4.Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany
  5. 5.Department of Natural Hazards and Alpine TimberlineBFWInnsbruckAustria

Personalised recommendations