Treelines in a Changing Global Environment

  • Gerhard WieserEmail author
  • Friedrich-Karl Holtmeier
  • William K. Smith
Part of the Plant Ecophysiology book series (KLEC, volume 9)


Over the last century the global mean surface temperature has increased by about 0.6 °C and was most pronounced at high elevation and high latitude. Because the elevations and latitudes of treelines are strongly correlated with the occurrence of heat deficiency, climate warming is expected to generate denser forests below the treeline, as well as treeline movement to greater elevations and poleward. Herein, conclusions are presented about the future of treeline movement following a review of mechanisms and limiting factors for tree growth, differences between tall trees and low stature vegetation (including seedlings), and seedling establishment and growth to forest tree stature.


Seedling Establishment Tree Island Mountain Birch Treeline Ecotone Limit Tree Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aario L (1940) Waldgrenzen und subrezente Pollenspektren in Petsamo Lappland. Ann Acad Soc Fennoscandis Ser A 54:1–120Google Scholar
  2. Aas B, Faarlund T (1996) The present and the Holocene birch belt in Norway. Paläoklimaforschung 20:18–24Google Scholar
  3. Alvarez-Uria P, Körner C (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 221:211–218Google Scholar
  4. Andersen CP, Sucoff EI, Dixon RK (1986) Effects of root zone temperature on root initiation and elongation in red pine seedlings. Can J For Res 16:696–700Google Scholar
  5. Anschlag K (2008) Regeneration der Fjellbirke (Betula pubescens ssp czerepanovii) und Wurzelsysteme ihres Jungwuchses im Waldgrenzökoton, Finnische Subarktis. PhD thesis, Münster UniversityGoogle Scholar
  6. Anschlag K, Broll G, Holtmeier F-K (2008) Mountain birch seedlings in the treeline ecotone, subarctic Finland: variation in above- and below-ground growth depending on microtopography. Arct Antarct Alp Res 40:609–616Google Scholar
  7. Aulitzky H (1961) Die Bodentemperaturverhältnisse in der Kampfzone oberhalb der Waldgrenze und im subalpinen Zirben-Lärchenwald. Mitt der Forstlichen Bundesversuchsanstalt Mariabrunn 59:153–208Google Scholar
  8. Aulitzky H (1984) The microclimatic conditions in a subalpine forest as basis for the management. GeoJournal 8:277–281Google Scholar
  9. Aulitzky H, Turner H, Mayer H (1982) Bioklimatische Grundlagen einer standortsgemäßen Bewirtschaftung des subalpinen Lärchen-Arvenwaldes. Mitt der Eidgenössichen Anstalt für das Forstliche Versuchswesen 58:327–580Google Scholar
  10. Bader MY, Rietkerk M, Bregt A (2007) Vegetation structures and temperature regimes of tropical alpine timberlines. Arct Antarct Alp Res 39:353–364Google Scholar
  11. Bader MY, van Geloof I, Rietkerk M (2008a) High solar radiation hinders tree regeneration above the alpine treelines in northern Ecuador. Plant Ecol 191:33–45Google Scholar
  12. Bader MY, Rietkerk M, Bregt AK (2008b) Simulated climate change in a simple spatial model of treeline dynamics influenced by excess solar radiation and fire. Arct Antarct Alp Res 40:269–278Google Scholar
  13. Baig MN, Tranquillini W (1980) The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in desiccation damage at the alpine treeline. Oecologia 47:252–256Google Scholar
  14. Bansal S, Germino MJ (2008) Temporal variation of nonstructural carbohydrates in montane conifers: similarities and differences among developmental stages, species and environmental conditions. Tree Physiol 29:559–568Google Scholar
  15. Barclay AM, Crawford RMM (1982) Winter desiccation stress and resting bud viability in relation to high altitude survival. Flora 72:21–34Google Scholar
  16. Barry RG (1978) Diurnal effects on topoclimate on an equatorial mountain. Arb aus der Zentralanstalt für Meteorol und Geodynamik 32:1–8Google Scholar
  17. Batllori E (2008) Regional assessment of recent Pinus uncinata alpine treeline dynamics in the Pyrenees. PhD dissertation, University of BarcelonaGoogle Scholar
  18. Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009) Seedling recruitment and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential response to climate warming. Glob Ecol Biogeogr 18:460–472Google Scholar
  19. Baumgartner A (1980) Mountain climates from a perspective of forest growth. In: Benecke U, Davis MR (eds) Mountain environments and subalpine forest growth, Proceedings IUFRO workshop November 1979, Christchurch, New Zealand Forest Service, Wellington, Technical paper 70Google Scholar
  20. Bazzigher G (1978) Die Bekämpfung des Arven-Schneepilzes Phacidium infestans Karst. Eidgenössiche Anstalt für das Forstliche Versuchswesen Bericht 182Google Scholar
  21. Bekker MF (2005) Positive feedback between tree establishment and patterns of subalpine forest advancemenmt, Glacier National Park, Montana, USA. Arct Antarct Alp Res 37:97–107Google Scholar
  22. Benecke U, Havranek WM (1980) Phenological growth characteristic of trees with increasing altitude, Cragieburn Range, New Zealand. In: Benecke U, Davis MR (eds) Mountain environments and subalpine forest growth, Proceedings IUFRO workshop November 1979, Christchurch, New Zealand Forest Service, Wellington, Technical paper 70Google Scholar
  23. Benecke U, Schulze E-D, Matyssek R, Havranek WM (1981) Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50:54–61Google Scholar
  24. Beniston M, Diaz HF, Bradley RS (1997) Climate change at high elevation sites: an overview. Clim Chang 36:233–251Google Scholar
  25. Birmann K, Körner C (2009) Nitrogen status of conifer needles at the alpine treeline. Plant Ecol Divers 2:233–241Google Scholar
  26. Blaser B (1980) Der Boden als Standortfaktor bei Aufforstungen in der subalpinen Stufe (Stillberg, Davos). Schweizerische Anstalt für das forstliche Versuchswesen Bericht 56Google Scholar
  27. Bonan GB (1992) Soil temperature as an ecological factor in boreal forests. In: Shugart HH, Leemans R, Bonan GB (eds) A system analysis of the global boreal forest. Cambridge University Press, CambridgeGoogle Scholar
  28. Brandes R (2007) Waldgrenzen griechischer Hochgebirge. Unter besonderer Berücksichtigung des Taygetos (Waldgrenzdynamik, dendrochronologische Untersuchungen). Erlanger Geographische Arbeiten, Sonderband 36Google Scholar
  29. Broll G, Holtmeier F-K (1994) Die Entwicklung von Kleinreliefstrukturen im Waldgrenzökoton der Front Range (Colorado, USA) unter dem Einfluß leewärts wandernder Ablegergruppen (Pice engelmanni and Abies lasiocarpa). Erdkunde 48:48–59Google Scholar
  30. Broll G, Holtmeier F-K, Anschlag K, Brauckmann H-J, Wald S (2007) Landscape mosaic in the treeline ecotone on Mt Rodjanoaivi, subarctic Finland. Fennia 185:89–105Google Scholar
  31. Bryn A (2008) Recent forest limit changes in south-east Norway: effects of climate change or regrowth after abandoned utilization? Nor Geogr Tidsskr 62:251–270Google Scholar
  32. Burga CA (1988) Swiss vegetation history during the last 18000 years. New Phytol 110:581–602Google Scholar
  33. Burga CA, Perret R (1998) Vegetation und Klima der Schweiz seit dem jüngeren Eiszeitalter. Ott Verlag, ThunGoogle Scholar
  34. Butler DR, Malanson GP, Resler LM (2004) Turf-banked terrace treads and risers, turf exfoliation and possible relationship with advancing treeline. Catena 58:259–274Google Scholar
  35. Caccianiga M, Payette S (2006) Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). J Biogeogr 33:2120–2132Google Scholar
  36. Cairns DM (2001) Patterns of winter desiccation in krummholz forms of Abies lasiocarpa at treeline sites in Glacier National Park, Montana, USA. Geogr Ann A 83:57–168Google Scholar
  37. Camarero JJ, Gutiérrez M (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Chang 63:181–200Google Scholar
  38. Chapman SK, Langley JA, Hart SC, Koch GW (2006) Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34PubMedGoogle Scholar
  39. Christersson L, von Fricks H, Sihe Y (1988) Damage to conifer seedlings by summer frost and winter drought. In: Sakai A, Larcher W (eds) Plant cold hardiness. Alan R Liss, Inc., New YorkGoogle Scholar
  40. Cornelissen JHC, Carnelli AL, Callaghan TV (1999) Generalities in the growth, allocation and leaf quality responses to elevated CO2 in eight woody species. New Phytol 141:401–409Google Scholar
  41. Crawford RMM (1989) Studies in plant survival. Ecological case histories of plant adaptation to adversity. Blackwell, OxfordGoogle Scholar
  42. Crawford RMM (2008) Plants at the margin. Ecological limits and climate change. Cambridge University Press, CambridgeGoogle Scholar
  43. Cuevas JG (2002) Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J Ecol 90:52–60Google Scholar
  44. Cui M, Smith WK (1991) Seedling microenvironment, gas exchange and survival during first-year establishment in subalpine conifers. Tree Physiol 10:44–53Google Scholar
  45. Cullen LE, Stewart GH, Duncan RP, Palmer JG (2001) Disturbance and climate warming influences on New Zealand Nothofagus tree-line population dynamics. J Ecol 89:1061–1071Google Scholar
  46. Dahms A (1984) Die natürliche Vermehrung mehrerer Baumarten im oberen Waldgrenzbereich der Colorado Front Range in ökologischer Sicht. Master thesis, Institute for Geography, Westfälische Wilhelms-Universität, MünsterGoogle Scholar
  47. Dahms A (1992) Wachstumsbedingungen bei Picea engelmannii (Parry) Engelm. und Abies lasiocarpa (Hook) Nutt. an unterschiedlich windexponierten Standorten im Waldgrenzbereich der Colorado Front Range, U.S.A. dissertation Mathematisch-Naturwissenschaftliche Fakultät, Westfälische Wilhelms-Universität, MünsterGoogle Scholar
  48. Dalen L, Hofgaard A (2005) Differential regional treeline dynamics in the Scandes Mountains. Arct Antarct Alp Res 37:284–296Google Scholar
  49. Danby RK, Hik DS (2007) Response of white spruce (Pinus glauca) to experimental warming at a subarctic alpine treeline. Glob Chang Biol 13:437–451Google Scholar
  50. Daniels LD, Veblen TT (2004) Spatiotemporal influence of climate on altitudinal treeline in northern Patagonia. Ecology 85:1284–1296Google Scholar
  51. Däniker A (1923) Biologische Studien über Baum- und Waldgrenzen, insbesondere über die klimatischen Ursachen und deren Zusammenhänge. Vierteljahresschrift Naturforsch Ges Zürich 68:1–102Google Scholar
  52. Daubenmire R (1954) Alpine treelines in the Americas and their interpretation. Butler Univ Bot Stud 2:119–136Google Scholar
  53. Day TA, DeLucia EH, Smith WK (1990) Effect of soil temperature on stem sap flow, shoot gas exchange and water potential in Picea engelmannii during snowmelt. Oecologia 84:474–481Google Scholar
  54. Delucia EV, Berlyn GP (1984) The effect of increasing elevation on leaf cuticle thickness and cuticular transpiration in balsam fir. Can J Bot 62:2423–2431Google Scholar
  55. Dial RJ, Berg EE, Timm K, McMahon A, Gecke J (2007) Changes in the alpine forest-tundra ecotone commensurate with recent warming in southcentral Alaska: evidence from orthophotos and field plots. J Geophys Res 112:G04015Google Scholar
  56. Diaz HF, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Clim Chang 36:253–279Google Scholar
  57. Donaubauer E (1963) Über die Schneeschütte-Krankheit (Phacidium infestans Karst.) der Zirbe (Pinus cembra L.) und einiger Begleitpilze. Mitt der Forstlichen Versuchsanstalt Mariabrunn 60:147–166Google Scholar
  58. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92:241–252Google Scholar
  59. Farmer RE Jr (1997) Seed ecophysiology of temperate and boreal forest zone trees. St Lucie Press, Delray BeachGoogle Scholar
  60. Franklin JF, Dyrness CT (1973) Natural vegetation of Oregon and Washington. USDA Forest Service, General technical report PNW-8Google Scholar
  61. French DD, Miller GR, Cummins RP (1997) Recent development of high-altitude Pinus sylvestris scrub in the northern Cairngorm Mountains, Scotland. Biol Conserv 79:133–144Google Scholar
  62. Frey W (1983) The influence of snow on growth and survival of planted trees. Arctic Alpine Res 15:241–251Google Scholar
  63. Friedel H (1967) Verlauf der alpine Waldgrenze im Rahmen anliegender Gebirgsgelände. Mitt der Forstlichen Bundesversuchsanstalt Mariabrunn 75:81–172Google Scholar
  64. Germino MJ, Smith WK (1999) Sky exposure, crown architecture, and low temperature photoinhibition inconifer seedlings at alpine tree line. Plant Cell Environ 22:407–415Google Scholar
  65. Germino MJ, Smith WK (2001) Interactions of microsite, plant form and low-temperature photoinhibition in alpine plants. Arct Antarct Alp Res 32:388–396Google Scholar
  66. Germino MJ, Smith WK, Resor AC (2002) Conifer seedling distribution and survival in an alpine treeline ecotone. Plant Ecol 162:57–168Google Scholar
  67. Germino MJ, Hasselquist NJ, McGoilgle TM, Smith WK, Sheridan P (2006) Colonization of conifer seedling roots by fungal mycelium in an alpine treeline ecotone: relationships to microsite, developmental stage, and ecophysiology of seedlings. Can J For Res 36:901–909Google Scholar
  68. Gieger T, Leuschner C (2004) Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt. Teide, Tenerife. Flora 199:100–109Google Scholar
  69. Goldstein G, Meinzer FC, Rada F (1994) Environmental biology of a tropical treeline species, Polylepis sericea. In: Rundel PW, Smith AP, Meinzer FP (eds) Tropical alpine environments: plant form and function. Cambridge University Press, CambridgeGoogle Scholar
  70. Grace J (1977) Plant response to wind. Academic, LondonGoogle Scholar
  71. Grace J (1989) Tree lines. Philos Trans R Soc B 234:233–245Google Scholar
  72. Grace J, Allen SJ, Wilson C (1989) Climate and the meristem temperatures of plant communities near the tree-line. Oecologia 79(1):98–204Google Scholar
  73. Grace J, Berninger F, Nagy L (2002) Impact of climate change on the tree line. Ann Bot 90:537–544PubMedGoogle Scholar
  74. Granström A (1987) Seed viability of fourteen species during five years of storage in a forest soil. J Ecol 75:321–331Google Scholar
  75. Gross M (1989) Untersuchungen an Fichten der alpinen Waldgrenze: Dissertationes Botanicae 139. Kramer, Berlin/StuttgartGoogle Scholar
  76. Gruber A, Wieser G, Oberhuber W (2010) Opinion paper: effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine timberline: a new approach based on root zone roofing. Eur J For Res 129:141–144PubMedCentralPubMedGoogle Scholar
  77. Gruber A, Pirkebner D, Oberhuber W, Wieser G (2011) Spatial and seasonal variation in mobile carbohydrates in Pinus cembra in the timberline ecotone of the Central Austrian Alps. Eur J For Res 130:173–179PubMedCentralPubMedGoogle Scholar
  78. Guggenberger H (1980) Untersuchungen zum Wasserhaushat der alpine Zwergstrauchheide Patscherkofel. PhD thesis, Botany, University InnsbruckGoogle Scholar
  79. Hadley JL, Smith WK (1983) Influence of wind exposure on needle desiccation and mortality for timberline conifers in Wyoming, U.S.A. Arctic Alpine Res 15:127–135Google Scholar
  80. Hadley JL, Smith WK (1986) Wind effects on needles of conifers, seasonal influences on mortality. Ecology 67:12–19Google Scholar
  81. Hadley JL, Smith WK (1987) Influence of krummholz mat microclimate on needle physiology and survival. Oecologia 73:82–90Google Scholar
  82. Hadley JL, Smith WK (1989) Wind erosion of leaf surface wax in timberline conifers. Arctic Alpine Res 21:392–398Google Scholar
  83. Hadley JL, Smith WK (1990) Influence of leaf surface wax and leaf area to water content ratio on cuticular transpiration in western conifers, U.S.A. Can J For Res 20:306–1311Google Scholar
  84. Haimi J, Huhta V, Boucleham M (1992) Growth increase of birch seedlings under the influence of earth worms – a laboratory study. Soil Biol Biochem 24:1525–1528Google Scholar
  85. Handa T, Körner C, Hättenschwiler S (2005) A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology 86:1288–1300Google Scholar
  86. Handa T, Körner C, Hättenschwiler S (2006) Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Glob Chang Biol 12:417–2430Google Scholar
  87. Häsler R, Streule A, Turner H (1999) Shoot and root growth of young Larix decidua in contrasting microenvironments near the alpine timberline. Phyton Ann Rei Bot 39:47–52Google Scholar
  88. Hasselquist NJ, Germino MJ, McGoilgle TM, Smith WK (2005) Variability of Cenococcum colonization and its ecological significance for young conifers at alpine treeline. New Phytol 165:867–873PubMedGoogle Scholar
  89. Hättenschwiler S, Smith WK (1999) Natural seedling occurrence in treeline conifers: a case study from the central Rocky Mountains, USA. Acta Oecol 20:219–224Google Scholar
  90. Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) Thirty years of in situ growth under elevated CO2: a model for future forest responses? Glob Chang Biol 3:463–471Google Scholar
  91. Hättenschwiler S, Handa T, Egli L, Asshof R, Ammann W, Körner C (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol 156:363–375Google Scholar
  92. Havranek WM (1972) Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und die Stoffproduktion an der Waldgrenze. Angew Bot 46:101–116Google Scholar
  93. Havranek WM, Benecke U (1978) The influence of soil moisture on water potential, transpiration and photoynthesis of conifer seedlings. Plant Soil 49:91–103Google Scholar
  94. Havranek WM, Tranquillini W (1995) Physiological processes during winter dormancy and their ecological significance. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic, San DiegoGoogle Scholar
  95. Hellmers H, Genthe MK, Ronco F (1970) Temperature affects growth and development of Engelmann spruce. For Sci 16:447–452Google Scholar
  96. Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21PubMedGoogle Scholar
  97. Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98:361–374Google Scholar
  98. Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081Google Scholar
  99. Hofgaard A (1997) Inter-relationships between treeline position, species diversity, land use and climate change in the central Scandes Mountains of Norway. Glob Ecol Biogeogr 6:419–429Google Scholar
  100. Holmgren B, Tjus M (1996) Summer temperatures and tree line dynamics at Abisko. Ecol Bull 45:159–169Google Scholar
  101. Holtmeier F-K (1974) Geoökologische Beobachtungen und Studien an der subarktischen und alpinen Waldgrenze in vergleichender Sicht. Steiner, WiesbadenGoogle Scholar
  102. Holtmeier F-K (1980) Influence of wind on tree physiognomy at the upper timberline in the Colorado Front Range. New Zealand Forest Service technical paper 70Google Scholar
  103. Holtmeier F-K (1982) “Ribbon-forest” und “Hecken”. Streifenartige Verbreitungsmuster des Baumwuchses an der oberen Waldgrenze in den Rocky Mountains. Erdkunde 36:142–153Google Scholar
  104. Holtmeier F-K (1985) Die klimatische Waldgrenze – Linie oder Übergangssaum (Ökoton)? Ein Diskussionsbeitrag unter besonderer Berücksichtigung der Waldgrenzen in den mittleren und hohen Breiten der Nordhalbkugel. Erkunde 39:271–285Google Scholar
  105. Holtmeier F-K (1986) Die obere Waldgrenze unter dem Einfluss von Klima und Mensch. Abh des Museums für Naturkunde 48:395–412Google Scholar
  106. Holtmeier F-K (1993) Timberlines as indicators of climatic changes: problems and research needs. Paläoklimaforschung 9:211–222Google Scholar
  107. Holtmeier F-K (1994) Ecological aspects of climatically-caused treeline fluctuations: review and outlook. In: Beniston M (ed) Mountain environments in changing climates. Routledge, LondonGoogle Scholar
  108. Holtmeier F-K (1995) Waldgrenze und Klimaschwankungen – Ökologische Aspekte eines vieldiskutierten Phänomens. Geoökodynamik 16:1–24Google Scholar
  109. Holtmeier F-K (1996) Der Wind als landschaftsökologischer Faktor in der subalpinen und alpinen Stufe der Front Range, Colorado. Arb Inst Landschaftsökol Westfälische Wilhelms-Univ Münster 1:19–45Google Scholar
  110. Holtmeier F-K (1999) Ablegerbildung im Hochlagenwald und an der oberen Waldgrenze in der Front Range, Colorado. Mitt Deut Dendrolog G 84:39–61Google Scholar
  111. Holtmeier F-K (2005a) Change in the timberline ecotone in northern Finnish Lapland during the last thirty years. Rep Kevo Subarctic Res Stn 23:97–113Google Scholar
  112. Holtmeier F-K (2005b) Relocation of snow and its effects in the treeline ecotone – with special regard to the Rocky Mountains, the Alps, and Northern Europe. Erde 136:343–373Google Scholar
  113. Holtmeier F-K (2009) Mountain timberlines. Ecology, patchiness, and dynamics, vol 36, Springer series: Advances in global change research. Springer, DordrechtGoogle Scholar
  114. Holtmeier F-K, Broll G (1992) The influence of tree islands and microtopography and pedoecological conditions in the forest-alpine tundra ecotone on Niwot Ridge, Colorado Front Range, U.S. Arctic Alpine Res 24:216–228Google Scholar
  115. Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410Google Scholar
  116. Holtmeier F-K, Broll G (2006) Radiocarbon-dated peat and wood remains from the Finnish Subarctic: evidence of treeline and landscape history. The Holocene 16:743–751Google Scholar
  117. Holtmeier F-K, Broll G (2007) Treeline advance – driving processes and adverse factors. Landscape 1:1–33Google Scholar
  118. Holtmeier F-K, Broll G (2010a) Wind as an ecological agent at treelines in North America, the Alps, and in the European Subarctic. Phys Geogr 33:203–233Google Scholar
  119. Holtmeier F-K, Broll G (2010b) Altitudinal and polar treelines in the northern hemisphere – causes and response to climate change. Polarforschung 79:139–153Google Scholar
  120. Holtmeier F-K, Müterthies A, Stevens GE (1996) Effektive Verjüngung und Zuwachs der Kiefer (Pinus sylvestris) und der Fichte (Picea abies) an ihrer Höhengrenze in Finnisch-Lappland während der letzten 100 Jahre. Arb Inst Landschaftsökol Westfälische Wilhelms-Univ Münster 1:85–99Google Scholar
  121. Holtmeier F-K, Broll G, Müterthies A, Anschlag K (2003) Regeneration of trees in the treeline ecotone: Northern Finnish Lapland. Fennia 181:103–128Google Scholar
  122. Holtmeier FK, Broll G, Anschlag K (2004) Winderosion und ihre Folgen im Waldgrenzbereich und in der alpinen Stufe einiger nordfinnischer Fjelle. Geoökologie 25:203–224Google Scholar
  123. Holzer K (1959) Winterliche Schäden an Zirben nahe der alpinen Baumgrenze. Centralblatt für das Ges Forstwes 76:232–244Google Scholar
  124. Hu J, Moore DJP, Burns SP, Monson RK (2010) Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob Chang Biol 16:771–783Google Scholar
  125. Hurtin KR, Marshall JD (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123:32–40Google Scholar
  126. IPCC (2007) Climate change 2007. Cambridge University Press, CambridgeGoogle Scholar
  127. Ives JD, Hansen-Bristow KJ (1983) Stability and instability of natural and modified upper timberline landscapes in the Colorado Rocky Mountains, U.S.A. Mt Res Dev 3:149–155Google Scholar
  128. James JC, Grace J, Hoad SP (1994) Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. J Ecol 82:297–306Google Scholar
  129. Jobbagy EG, Jackson RB (2000) Global controls of forest line elevations in the northern and southern hemispheres. Glob Ecol Biogeogr 9:253–268Google Scholar
  130. Johnson DM, Germino MJ, Smith WK (2004) Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline. Tree Physiol 24:377–386PubMedGoogle Scholar
  131. Jones HG (1991) Plants and microclimate. A quantitative approach to environmental plant physiology. University Press, CambridgeGoogle Scholar
  132. Jones PD, Wigley TML, Folland CK, Parker DE, Angelli JK, Jebedeff S, Hansen JE (1988) Evidence of global warming in the last decade. Nature 332:790Google Scholar
  133. Jordan DN, Smith WK (1994) Energy balance analysis of nighttime leaf temperature and frost formation in a subalpine environment. Agr For Meteorol 71:359–372Google Scholar
  134. Jordan DN, Smith WK (1995) Microclimate factors influencing the frequency and duration of growth season frost in subalpine plants. Agric For Meteorol 77:17–30Google Scholar
  135. Juntilla O (1986) Effects of temperature on shoot growth in northern provenances of Pinus sylvestris L. Tree Physiol 1:185–192Google Scholar
  136. Juntilla O, Nilsen J (1993) Growth and development of northern forest trees as affected by temperature and light. In: Alden J, Mastrantonio JL, Odum S (eds) Forest development in cold climates. Plenum Press, New YorkGoogle Scholar
  137. Juntunen V, Neuvonen S (2006) Natural regeneration of Scots pine and Norway spruce close to the timberline in northern Finland. Silva Fenn 40:443–458Google Scholar
  138. Juntunen V, Neuvonen S, Norokorpi Y, Tasanen T (2002) Potential of timberline advance in northern Finland, as revealed by monitoring during 1983–99. Arctic 55:348–361Google Scholar
  139. Kaiser WM (1987) Effects of water deficit on photosynthetic capacity. Physiol Plant 77:142–149Google Scholar
  140. Kaltenrieder P, Tinner W, Ammann B (2005) Zur Langzeitökologie des Lärchen-Arvengürtels in den südlichen Walliser Alpen. Bot Helv 115:137–154Google Scholar
  141. Kanninen M (1985) Shoot elongation in Scots Pine: diurnal variations and response to temperature. J Exp Bot 36:760–1770Google Scholar
  142. Karlsson PS, Nordell KO (1996) Effects of soil temperature on nitrogen economy and growth of mountain birch seedlings near its presumed low temperature distribution limit. Ecoscience 3:183–189Google Scholar
  143. Karlsson PS, Weih M (2001) Soil temperature near the distribution limit of mountain birch (Betula pubescens ssp. czerepanovii): implications for seedling nitrogen economy and survival. Arct Antarct Alp Res 33:88–92Google Scholar
  144. Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. Accessed 30 Oct 2010
  145. Knapp AK, Smith WK (1982) Factors influencing understory seedling establishment of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) in southeast Wyoming. Can J Bot 60:2753–2761Google Scholar
  146. Koch O, Tscherko D, Küppers M, Kandeler E (2008) Interannual ecosystem CO2 dynamics in the alpine zone of the Eastern Alps, Austria. Arct Antarct Alp Res 40:487–496Google Scholar
  147. Körner C (1994) Leaf conductance in the major vegetation types of the globe. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100, Ecological studies. Springer, BerlinGoogle Scholar
  148. Körner C (1998a) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459Google Scholar
  149. Körner C (1998b) Worldwide position of alpine treelines and their causes. In: Beniston M, Innes JL (eds) The impacts of climatic variability on forest. Springer, HeidelbergGoogle Scholar
  150. Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Berlin/HeidelbergGoogle Scholar
  151. Körner C (2003) Carbon limitation in trees. J Ecol 94:4–17Google Scholar
  152. Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411PubMedGoogle Scholar
  153. Körner C (2007a) Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316–324Google Scholar
  154. Körner C (2007b) Drivers and the driven in a warming, high CO2 world. BES annual meeting and AGM report, British Ecological Society, The Bulletin December 2007:19–20Google Scholar
  155. Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732Google Scholar
  156. Kronfuss H (1994) Der Einfluß der Lufttemperatur auf das Höhenwachstum der Zirbe. Centralblatt für das Ges Forstwes 111:165–181Google Scholar
  157. Kronfuss H (1997) Das Klima einer Hochlagen aufforstung in der subalpinen Höhenstufe. FBVA Ber 100Google Scholar
  158. Kronfuss H, Havranek WM (1999) Effects of elevation and wind on the growth of Pinus cembra L. in a subalpine afforestation. Phyton Ann Rei Bot 39:99–106Google Scholar
  159. Kryuchkov VV (1973) The effect of permafrost on northern treeline. Proceedings of the international conference on Permafrost, USSR contribution, Washington, DC. Proc Natl Acad Sci U S A 1973:136–138Google Scholar
  160. Kullman L (1997) Tree-limit stress and disturbance. A 25-year survey of geoecological change in the Scandes Mountains of Sweden. Geogr Ann A 79:139–165Google Scholar
  161. Kullman L (2001) 20th century climate warming and treelimit rise in the southern Scandes in Sweden. Ambio 30:2–80Google Scholar
  162. Kullman L (2004) Tree-limit landscape evolution at the southern fringe of the Swedish Scandes (Dalarna Province) – Holocene and 20th century perspectives. Fennia 182:73–94Google Scholar
  163. Kullman L (2005a) Wind-conditioned 20th century decline of birch treeline vegetation in the Swedish Scandes. Arctic 58:286–294Google Scholar
  164. Kullman L (2005b) Trädgränsen I Dalarfjällen. Del 1. Gamla och nya träd på Fulufjället vegetationshistoria på höh nivå. Miljövärdsenheten Rapport 2005:10Google Scholar
  165. Kullman L (2010) One century of treeline change and stability-experiences from the Swedish Scandes, 1973–2005. Landscape 17:1–31Google Scholar
  166. Kullman L, Öberg L (2009) Post-Little Ice Age treeline rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429Google Scholar
  167. LaMarche VC (1973) Holocene climatic variations, inferred from tree line fluctuations in the White Mountains, California. Quat Res 3:632–660Google Scholar
  168. Lange S, Bussmann RW, Beck E (1997) Stand structure and regeneration of the subalpine Hagenia abyssinica forests of Mt. Kenya. Bot Acta 110:473–480Google Scholar
  169. Larcher W (1957) Frosttrocknis an der Waldgrenze und in der alpinen Zwergstrauchheide. Veröff des Mus Ferdinandeum Innsbruck 37:49–81Google Scholar
  170. Larcher W (1963) Zur spätwinterlichen Erschwerung der Wasserbilanz von Holzpflanzen an der Waldgrenze. Ber des Naturwiss Med Ver Innsbruck 53:25–137Google Scholar
  171. Larcher W (1977) Ergebnisse des IBP-Projekts “Zwergstrauchheide Patscherkofel”. Sitzungsbericht der Österr Akad der Wiss Wien Math Natwiss Kl Abt I 186:301–371Google Scholar
  172. Larcher W (1980a) Ökologie der Pflanzen auf physiologischer Grundlage, 3rd edn. Ulmer, StuttgartGoogle Scholar
  173. Larcher W (1980b) Klimastreß im Gebirge – Adaptationstraining und Selektionsfilter für Pflanzen. Rhein Akad Wiss Vorträge 291:49–88Google Scholar
  174. Larcher W (1985) Winter stress in high mountains. In: Turner H, Tranquillini W (eds) Establishment and tending of subalpine forests: research and management, Berichte der Eidgenössischen Anstalt für das Forstliche Versuchswesen 270Google Scholar
  175. Larcher W (2001) Ökophysiologie der Pflanzen: Leben, Leistung und Stressbewältigung der Pflanzen in ihrer Umwelt. Ulmer, StuttgartGoogle Scholar
  176. Larsen JA (1989) The northern forest border in Canada and Alaska – biotic communities and ecological relationships, vol 70, Ecological studies. Springer, New YorkGoogle Scholar
  177. Lauer W, Klaus D (1975) Geoecological investigations on the timberline of Pico de Orizaba, Mexico. Arctic Alpine Res 7:315–330Google Scholar
  178. Lauer W, Rafigpoor MD, Theisen I (2001) Physiogeographie, Vegetation und Syntaxonomie der Flora des Páramo de Papallacta. Erdwissenschaftliche Forschung 29, StuttgartGoogle Scholar
  179. League K, Veblen T (2006) Climatic variability and episodic Pinus ponderosa establishment along the forest-grassland ecotones of Colorado. For Ecol Manag 228:98–107Google Scholar
  180. Leonelli G, Pelfini M, Battapaglia G, Cherubini P (2009) Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Climate Change 96:185–201Google Scholar
  181. Li MH, Yang J (2004) Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps. Ann For Sci 61:319–325Google Scholar
  182. Li MH, Yang J, Kräuchi N (2003) Growth response of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria. Can J For Res 33:653–662Google Scholar
  183. Li MH, Xiao WF, Wang SG, Cheng G, Cherubini P, Cal XH, Liu XL, Wang XD, Zhu WZ (2008) Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiol 28:1287–1296PubMedGoogle Scholar
  184. Lindsay JH (1971) Annual cycle of leafwater potential in Picea engelmannii and Abies lasiocarpa at timberline in Wyoming. Arctic Alpine Res 3:131–138Google Scholar
  185. Litaor MI (1987) The influence of aeolian dust on the genesis of alpine soils in the Front Range, Colorado. Soil Sci Soc Am J 51:142–147Google Scholar
  186. Lloyd AH, Graumlich LJ (1997) Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78:1199–1210Google Scholar
  187. Loris K (1981) Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Mitt der Forstlichen Bundesversuchsanstalt Wien 142:417–441Google Scholar
  188. Loris K, Havranek WM, Wieser G (1999) The ecological significance of thickness changes in stem, branches, and twigs of Pinus cembra L. during winter. Phyton Ann Rei Bot 39:117–122Google Scholar
  189. Lugina KM, Groisman PY, Vinnikov KY, Koknaeva VV, Speranskaya NA (2006) Monthly surface air temperature time series area-averaged over 30 – degree latitudinal belts over the globe, 1881–2005. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge. Accessed 30 Oct 2010
  190. Lyr H (1996) Effect of the root temperature on growth parameters of various European tree species. Ann For Sci 53:317–323Google Scholar
  191. Lyr H, Hoffmann G (1967) Growth rates and growth periodicity of tree roots. Int Rev For Res 2:181–236Google Scholar
  192. Malanson GP, Bulter DR, Fagre DB, Walsh SJ, Tomback DF, Daniels LD, Resler LM, Smith WK, Weiss DL, Peterson DL, Bunn AG, Heimstra CA, Lipton D, Bourgeron PS, Shen Z, Miller CI (2007) Alpine treelines of western North America and global climate change: linking organism to landscape dynamics. Phys Geogr 28:378–396Google Scholar
  193. Malanson GP, Brown DG, Butler DR, Cairns DM, Fagre DB, Wlash SJ (2009) Ecotone dynamics: invasibility of alpine tundra by tree species from the subalpine forest. In: Butler DB, Malanson GP, Walsh SJ, Fagre DB (eds) The changing alpine treeline: the example of Glacier National Park, MT, USA, vol 12, Developments in earth surface processes. Elsevier, AmsterdamGoogle Scholar
  194. Marchand P, Chabot BF (1978) Winter water relations of tree-line plant species on Mount Washington, New Hampshire. Arctic Alpine Res 10:105–116Google Scholar
  195. Marr JW (1977) The development and movement of tree islands near the upper limit of tree growth in the southern Rocky Mountains. Ecology 58:1159–1164Google Scholar
  196. Mattes H (1978) Der Tannenhäher im Engadin. Studien zu seiner Ökologie und Funktion im Arvenwald. Münstersche Geographische Arbeiten, vol 2Google Scholar
  197. Mattes H (1982) Die Lebensgemeinschaft von Arve und Tannenhäher. Eidgenössische Anstalt für das Forstliche Versuchswesen, Ber 241Google Scholar
  198. Matyssek R, Wieser G, Patzner K, Blaschke H, Häberle K-H (2009) Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts. Eur J For Res 128:579–596Google Scholar
  199. McCaughey WW (1994) The regeneration process of whitebark pine. In: Schmidt WC, Holtmeier FK (eds) Proceedings of the international workshop on subalpine Pinus pinea and their environment: the status of our knowledge, St. Moritz, 5–11 Sept 1992. USDA Forest Service, Intermountain Research Station, General technical report INT-GTR 309Google Scholar
  200. McDonald GM, Kremenetski KV, Beilman DW (2008) Climate change and the northern Russian treeline zone. Phil Trans R Soc B 363:2285–2299Google Scholar
  201. Mellmann-Brown S (2005) Regeneration of whitebark pine in the timberline ecotone of the Beartooth Plateau, U.S.A.: spatial distribution and responsible agents. In: Broll G, Keplin B (eds) Mountain ecosystems, Studies in treeline ecology. Springer, BerlinGoogle Scholar
  202. Michealis P (1934a) Ökologische Studien an der Baumgrenze. IV. Zur Kenntnis des winterlichen Wasserhaushaltes. Jahrb der Wiss Bot 80:169–247Google Scholar
  203. Michealis P (1934b) Ökologische Studien an der Baumgrenze. V. Osmotischer Wert und Wassergehalt während des Winters in den verschiedenen Höhenlagen. Jahrb der Wiss Bot 80:37–362Google Scholar
  204. Millard P, Sommerkorn M, Quen-Aelle G (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175:11–28PubMedGoogle Scholar
  205. Mooney HA, Wright RD, Strain BR (1964) The gas exchange capacity of plants in relation to vegetation zonation in the White Mountains of California. Am Midl Nat 72:281–297Google Scholar
  206. Müller-Stohl WR (1954) Beiträge zur Ökologie der Waldgrenze am Feldberg im Schwarzwald. In: Janchen E (ed) Angewandte Pflanzensoziologie. Festschrift Erwin Aichinger, vol 2. Springer, WienGoogle Scholar
  207. Müterthies A (2002) Struktur und Dynamik der oberen Waldgrenze des Lärchen-Arvenwaldes im Bereich aufgelassener Alpweiden im Oberengadin. Arb Institut für Landschaftsölogie, vol 11. Westfälische Wilhelms-Universität, MünsterGoogle Scholar
  208. Müterthies A (2003) The potential timberline: determination with dendrochronological methods. In: Schleser G, Winiger M, Bräuning A, Gärtner H, Helle G, Jensma E, Neuwirth B, Treydtke K (eds) TRACE tree rings in archeology, climatology and ecology, Proceedings of the Dendrosymposium 11–13 Apr 2002, BonnGoogle Scholar
  209. Neuner G (2007) Frost resistance at the upper timberline. In: Wieser G, Tausz M (eds) Trees at their upper limit. Treelife limitation at the alpine timberline, vol 5, Plant ecophysiology series. Springer, DordrechtGoogle Scholar
  210. Nicolussi K, Bortenschlager S, Körner C (1995) Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO2 related. Trees 9:181–189Google Scholar
  211. Nierhaus-Wunderwald D (1996) Pilzkrankheiten in Hochlagen, Biologie und Befallsmerkmale. Wald und Holz 10:18–24Google Scholar
  212. Nilsson MC, Höberg P, Zackrisson O, Wang F (1993) Allelopathic effects by Empetrum hermaphroditum on development and nitrogen uptake by roost and mycorrhiza of Pinus sylvestris. Can J Bot 71:620–628Google Scholar
  213. Ninot JM, Batllori E, Carillo E, Carreras J, Ferré A, Gutiérrez WE (2008) Timberline structure and limited tree recruitment in the Catalan Pyrenees. Plant Ecol Divers 1:47–57Google Scholar
  214. Noble DL, Alexander RR (1977) Environmental factors affecting natural regeneration of Engelmann spruce in the central Rocky Mountains. For Sci 23:420–429Google Scholar
  215. Oberhuber W (2007) Limitation by growth processes. In: Wieser G, Tausz M (eds) Trees at their upper limit. Treelife limitation at the alpine timberline, vol 5, Plant ecophysiology series. Springer, DordrechtGoogle Scholar
  216. Odland A (1996) Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. Paläoklimaforschung 20:42–59Google Scholar
  217. Ohsawa M (1990) An interpretation of latitudinal patterns of forest limits in south and east Asian mountains. J Ecol 78:262–339Google Scholar
  218. Ow LF, Griffin KL, Whitehead D, Walcroft AS, Turnbull MH (2008) Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoides×nigra. New Phytol 178:123–134PubMedGoogle Scholar
  219. Patten DT (1963) Light and temperature influence on Engelmann spruce seed germination and subalpine forest advance. Ecology 44:817–818Google Scholar
  220. Paulsen J, Weber UM, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arct Antarct Alp Res 32:14–20Google Scholar
  221. Paus A (2010) Vegetation and environment of the Rødalen alpine area, Central Norway, with emphasis on the early Holocene. Veg Hist Archeobot 19:29–51Google Scholar
  222. Payette S, Delwaide A (1994) Growth of black spruce at its northern range limit in Arctic Québec, Canada. Arctic Alpine Res 24:40–49Google Scholar
  223. Perkins TD, Adama GT, Klein RM (1991) Desiccation or freezing? Mechanisms of winter injury to red spruce foliage. Am J Bot 78:1207–1217Google Scholar
  224. Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. New Phytol 147:105–115Google Scholar
  225. Rada F, Azócar A, Gonzales J, Briceno B (1998) Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecologia 19:73–79Google Scholar
  226. Retzer JL (1974) Alpine soils. In: Ives JD, Barry RG (eds) Arctic and alpine environment. Methuen, LondonGoogle Scholar
  227. Richardson AD, Friedland AJ (2009) A review of the theories to explain arctic and alpine treelines around the world. J Sustain For 28:218–242Google Scholar
  228. Richardson AD, Berlyn GP, Gregorie TG (2001) Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamifera (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire, USA. Am J Bot 88:667–676PubMedGoogle Scholar
  229. Richter M, Diertl K-H, Peters T, Bussmann RW (2008) Vegetation structures and ecological features of the upper timberline ecotone. In: Beck E, Bendix J, Kottke I, Makeshin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem, vol 198, Ecological studies. Springer, BerlinGoogle Scholar
  230. Rien M, Spengler T, Richter M (1998) Klimaökologische Aspekte in Gebirgen der südwestlichen USA unter besonderer Berücksichtigung der White Mountains. Mitt der Fränkisch Geographishen Ges 45:301–333Google Scholar
  231. Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptations to freezing stress, vol 62, Ecological studies. Springer, BerlinGoogle Scholar
  232. Sakai A, Weiser CJ (1973) Freezing resistance of trees in North America with reference to tree regions. Ecology 54:118–126Google Scholar
  233. Schreiber H (1991) Untersuchungen zur Standortdifferenzierung im Waldgrenzbereich am Koahppeloaivi (Utsjoki, Finnish Lapland). Diploma thesis, Westfälische Wilhelms-Universität, MünsterGoogle Scholar
  234. Schulze E-D, Chapin FS, Gebauer G (1994) Nitrogen nutrition and isotope difference among life forms at the northern treeline of Alaska. Oecologia 100:406–412Google Scholar
  235. Schwarz R (1983) Simulationsstudien zur Theorie der oberen Waldgrenze. Erdkunde 37:1–11Google Scholar
  236. Scott PA, Bentley CV, Fayle DCF, Hansell RIC (1987a) Crown forms and shoot elongation of white spruce at the treeline, Churchill, Manitoba, Canada. Arct Alp Res 19:175–186Google Scholar
  237. Scott PA, Hansell RIC, Fayle DCF (1987b) Establishment of white spruce populations and responses to climate change at the treeline, Churchill, Manitoba, Canada. Arct Alp Res 19:45–51Google Scholar
  238. Shi P, Körner C, Hoch G (2006) End of season carbon supply status of woody species near the treeline in western China. Basic Appl Ecol 4:370–377Google Scholar
  239. Shi P, Körner C, Hoch G (2008) A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct Ecol 22:213–220Google Scholar
  240. Skre O (1993) Growth of mountain birch (Betula pubescens ERH.) in response to changing temperature. In: Alden K, Mastrantonio JL, Odum S (eds) Forest development in cold climates, NATO ASI series A 244. Plenum Press, New YorkGoogle Scholar
  241. Slatyer RO (1976) Water deficits in timberline trees in the Snowy Mountains of southeastern Australia. Oecologia 24:357–366Google Scholar
  242. Slatyer RO, Noble IR (1992) Dynamics of treelines. In: Hansen A, DiCastri F (eds) Landscape boundaries: consequences for biotic diversity and ecological flows, vol 92, Ecological studies. Springer, BerlinGoogle Scholar
  243. Smith JMB (1980) Ecology of the high mountains of Guinea. In: Van Royen O (ed) The alpine flora of New Guinea. Cramer, VaduzGoogle Scholar
  244. Smith WK, Brewer CA (1994) The adaptive importance of shoot and crown architecture in conifer trees. Am Nat 143:528–532Google Scholar
  245. Smith WK, Carter GA (1988) Shoot structural effects on needle temperature and photosynthesis in conifers. Am J Bot 75:496–500Google Scholar
  246. Smith WK, Donahue R (1991) Simulated effects of altitude on photosynthetic CO2 uptake potential in plants. Plant Cell Environ 14:133–136Google Scholar
  247. Smith WK, Geller G (1979) Plant transpiration at high elevations: theory, field measurement, and comparison with desert plants. Oecologia 41:109–122Google Scholar
  248. Smith WK, Hughes NM (2009) Progress in coupling plant form and photosynthetic function. Castanea 74:1–26Google Scholar
  249. Smith WK, Johnson DM (2009) Biophysical effects of altitude on plant gas exchange. In: De la Barrera E, Smith WK (eds) Perspectives in biophysical plant ecophysiology: a tribute to Park S. Nobel, Universidad Nacional Autonoma Mexico, CIECOGoogle Scholar
  250. Smith WK, Knapp A (1990) Ecophysiology of high elevation forests. In: Osmond CB, Pitelka L (eds) Plant biology of the Great Basin and Range, vol 80, Ecological studies. Springer, LondonGoogle Scholar
  251. Smith WK, Germino TE, Hancock TE, Johnson DM (2003) Another perspective on the altitudinal occurrence of alpine tree lines. Tree Physiol 23:1101–1113PubMedGoogle Scholar
  252. Smith WK, Nobel PS, Reiners WE, Vogelmann TC, Chritchley C (2004) Summary and future perspectives. In: Smith WK, Vogelmann TC, Critchleyz (eds) Photosynthetic adaptation from chloroplast to landscape, vol 178, Ecological studies. Springer, BerlinGoogle Scholar
  253. Smith WK, Geronimo MJ, Johnson DM, Reinhardt K (2009) The altitude of alpine treeline: a bellwether of climate change effects. Bot Rev 75:163–190Google Scholar
  254. Sowell JB, Kouitnik DL, Lansing AJ (1982) Cuticular transpiration of whitebark pine (Pinus albicaulis) within a Sierra Nevadan timberline ecotone, USA. Arctic Alpine Res 14:97–103Google Scholar
  255. Sparks JP, Ehleringer JR (1997) Leaf carbon isotope discrimination and nitrogen content of riparian trees along an elevational gradient. Oecologia 109:362–367Google Scholar
  256. Steinbjörnsson B, Nordell O, Kauhanen H (1992) Nutrient relations of mountain birch growth at and below the elevational tree-line in Swedish Lapland. Funct Ecol 6:213–220Google Scholar
  257. Stöhr D (2007) Soils – heterogeneous at a microscale. In: Wieser G, Tausz M (eds) Trees at their upper limit. Treelife limitation at the alpine timberline, vol 5, Plant ecophysiology. Springer, DordrechtGoogle Scholar
  258. Streule A, Häsler R (2006) Windschutz für junge Bäume in subalpinen Aufforstungen an stark windexponierten Standorten, “Pru dal vent” (Alp Grüm, GR). Eidgenössische Anstalt für Wald, Schnee und Landschaft WSL, BirmensdorfGoogle Scholar
  259. Strömgren K, Linder S (2002) Effect of nutrition and soil warming on stemwood production in a boreal Norway spruce stands. Glob Chang Biol 8:1195–1204Google Scholar
  260. Stützer A (2005) Bildsequenzen als Zeugen der Vegetationsdynmaik in der subalpinen-alpinen Höhenstufe der Koralpe (Kärnten/Österreich). Wulfenia 9:89–104Google Scholar
  261. Suni T, Berninger F, Markkanen T, Keronen P, Rannik U, Vesala T (2003) Interannual variability and timing of growing season CO2 exchange in a boreal forest. J Geophys Res 108:4265–4273Google Scholar
  262. Susiluoto S, Perämäki M, Nikinmaa E, Berninger F (2007) Effects of sink removal on transpiration at the treeline: implications for the growth limitation hypothesis. Environ Exp Bot 60:334–339Google Scholar
  263. Sutinen M-L, Arora R, Wisniewski M, Ashworth E, Strimbeck R, Palta J (2001) Mechanisms of frost survival and freeze-damage in nature. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness, vol 1, Tree physiology. Springer, DordrechtGoogle Scholar
  264. Sutter E, Amann F (1953) Wie weit fliegen vorratssammelnde Tannenhäher? Ornithol Beobachter 50:89–90Google Scholar
  265. Sveinbjörsson B, Kauhanen H, Nordell O (1996) Treeline ecology of mountain birch in the Torneträsk area. Ecol Bull 45:65–70Google Scholar
  266. Tasanen T, Norokorpi Y, Sepponen P, Jutunen V (1998) Monitoring timberline dynamics in northern Lapland. In: Tasanen T (ed) Research and management of the northern timberline region, Proceedings of the Gustav Sirén symposium, Wilderness Center Inari, 4–5 Sept 1997, Research papers 677. The Finnish Forest Research Institute, VantaaGoogle Scholar
  267. Thorn CE (1978) The geomorphic role of snow. Ann Assoc Am Geogr 68:414–425Google Scholar
  268. Tinner W, Kaltenrieder P (2005) Rapid response of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947Google Scholar
  269. Tomback DF (1977) The behavioral ecology of Clark’s Nutcracker (Nucifraga columbiana) in the eastern Sierra Nevada. PhD thesis, University of Santa BarbaraGoogle Scholar
  270. Tomback DF, Sund SK, Hoffmann L (1993) Post-fire regeneration of Pinus albicaulis: height-age relationships, age structure, and microsite characteristics. Can J For Res 23:113–119Google Scholar
  271. Tomback DF, Holtmeier FK, Mattes H, Carsey KF, Powell ML (1994) Tree clusters and growth form distribution in Pinus cembra, a bird-dispersed pine. Arctic Alpine Res 25:74–381Google Scholar
  272. Tranquillini W (1959) Die Stoffproduktion der Zirbe an der Waldgrenze während eines Jahres. 1. Standortsklima und CO2-assimilation. Planta 54:107–129Google Scholar
  273. Tranquillini W (1964) Photosynthesis and dry matter production of tress at high altitudes. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic, New YorkGoogle Scholar
  274. Tranquillini W (1973) Der Wasserhaushalt junger Forstpflanzen nach dem Versetzen und seine Beeinflussbarkeit. Centralblatt für das Ges Forstwes 90:46–52Google Scholar
  275. Tranquillini W (1976) Water relations and alpine timberline. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life, vol 19, Ecological studies. Springer, BerlinGoogle Scholar
  276. Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps, vol 31, Ecological studies. Springer, BerlinGoogle Scholar
  277. Tranquillini W (1980) Winter desiccation as the cause for alpine timberline. In: Benecke U, Davis MR (eds) Mountain environments and subalpine tree growth, New Zealand Forest Service Technical Paper 70Google Scholar
  278. Tranquillini W (1982) Frost drought and its ecological significance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology 12B, Physiological plant ecology II. Springer, BerlinGoogle Scholar
  279. Tranquillini W, Turner H (1961) Untersuchungen über die Pflanzentemperaturen in der subalpinen Stufe mit besonderer Berücksichtigung der Nadeltemperatur der Zirbe. Mitt der Forstlichen Bundesversuchsanstalt Mariabrunn 59:127–151Google Scholar
  280. Tranter M (1991) Controls of the composition of snow melt. In: Davies TD, Tranter M, Jones HG (eds) Seasonal snowpacks: processes for compositional change, Proceedings of the NATO advanced research workshop on Processes of chemical change in snowpacks, Maratea, July 1990, Ecological sciences 18, BerlinGoogle Scholar
  281. Tranter M, Jones HG (2001) The chemistry of snow. Processes and nutrient cycling. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) An interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  282. Troll C (1973) The upper timberlines in different climatic zones. Arctic Alpine Res 5:A3–A18Google Scholar
  283. Tryon PR, Chapin FS III (1983) Temperature control over root growth and root biomass in taiga forest trees. Can J For Res 13:827–833Google Scholar
  284. Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suec 67:1–110Google Scholar
  285. Turner H (1958) Maximaltemperaturen oberflächennaher Bodenschichten an der subalpinen Waldgrenze. Wetter und Leben 10:1–12Google Scholar
  286. Turner H (1968) Über “Schneeschliff” in den Alpen. Wetter und Leben 20:192–200Google Scholar
  287. Turner H, Streule A (1983) Wurzelwachstum und Sprossentwicklung junger Koniferen im Klimastress der alpinen Waldgrenze, mit Berücksichtigung von Mikroklima, Photosynthese und Stoffproduktion. Wurzelökologie und ihre Nutzanwendung. Internationales symposium Gumpenstein, 1982. Bundesanstalt GumpensteinGoogle Scholar
  288. Van Gradingen P, Grace J, Jeffree CE (1991) Abrasive damage by wind to the needle surface of Pinus sylvestris L. and Picea sitchensis (Bong.) Carr. Plant Cell Environ 14:185–193Google Scholar
  289. Vittoz P, Rulence B, Largey T, Freléchoux (2008) Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the central Swiss Alps. Arct Antarct Alp Res 40:225–232Google Scholar
  290. Walther G-R, Beißner S, Pott R (2005) Climate change and high mountain vegetation shifts. In: Broll G, Keplin B (eds) Mountain ecosystems, vol Studies in treeline ecology. Springer, BerlinGoogle Scholar
  291. Wardle P (1968) Engelmann spruce (Picea engelmannii Engel.) at its upper limit on the Front Range, Colorado. Ecology 49:483–495Google Scholar
  292. Wardle P (1974) Alpine timberlines. In: Ives JD, Barry R (eds) Arctic and alpine environments. Methuen Publishing, LondonGoogle Scholar
  293. Wardle P (1985) New Zealand timberlines. 1. Growth and survival of native and introduced tree species in the Craigieburn Range, Canterbury. N Z J Bot 23:219–234Google Scholar
  294. Wardle P (2007) New Zealand forest to alpine transitions in global context. Arct Antarct Alp Res 40:240–249Google Scholar
  295. Wardle P, Coleman MC (1992) Evidence for rising upper limits of four native New Zealand forest trees. N Z J Bot 30:303–314Google Scholar
  296. Weih M, Karlsson S (1999) The nitrogen economy of mountain birch seedlings: implications for winter survival. J Ecol 827:211–219Google Scholar
  297. Wesche K, Cierjacks A, Assefa Y, Wagner S, Fetene M, Hensen I (2008) Recruitment of trees at tropical treelines: Erica in Africa versus Polylepis in South America. Plant Ecol Divers 1:35–46Google Scholar
  298. Wieser G (1997) Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol 17:473–477PubMedGoogle Scholar
  299. Wieser G (2000) Seasonal variation of leaf conductance in a subalpine Pinus cembra during the winter months. Phyton Ann Rei Bot 40:185–190Google Scholar
  300. Wieser G (2002) The role of sapwood temperature variations within Pinus cembra on calculated stem respiration: implications for upscaling and predicted global warming. Phyton Ann Rei Bot 42:1–11Google Scholar
  301. Wieser G (2012) Lessons from the timberline ecotone in the Central Tyrolean Alps: a review. Plant Ecol Divers 5:127–139Google Scholar
  302. Wieser G, Bahn M (2004) Seasonal and spatial variation in woody-tissue respiration in a Pinus cembra tree at the alpine timberline in the Central Austrian Alps. Trees 18:576–580Google Scholar
  303. Wieser G, Kronfuss G (1997) Der Einfluß von Dampfdruckdefizit und mildem Bodenwasserstreß auf den Gaswechsel junger Fichten (Picea abies [L.] Karst.). Centralblatt für das Ges Forstwes 114:173–182Google Scholar
  304. Wieser G, Stöhr D (2005) Net ecosystem carbon dioxide exchange dynamics in a Pinus cembra forest at the uppertimberline in the Central Austrian Alps. Phyton Ann Rei Bot 45:233–242Google Scholar
  305. Wieser G, Tausz M (eds) (2007) Trees at their upper limit: treelife limitation at the alpine timberline, vol 5, Plant ecophysiology series. Springer, DordrechtGoogle Scholar
  306. Wieser G, Hammerle A, Wohlfahrt G (2008) The water balance of grassland ecosystems in the Austrian Alps. Arct Antarct Alp Res 40:439–445PubMedCentralGoogle Scholar
  307. Wieser G, Matysssek R, Luzian R, Zwerger P, Pindur P, Oberhuber W, Gruber A (2009) Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann For Sci 66:402PubMedCentralPubMedGoogle Scholar
  308. Wieser G, Oberhuber W, Walder L, Spieler D, Gruber A (2010) Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the central Austrian Alps. Ann For Sci 67:201PubMedCentralPubMedGoogle Scholar
  309. Wilson C, Grace J, Allen S, Slack F (1987) Temperature and stature: a study of temperatures in montane vegetation. Funct Ecol 1:405–413Google Scholar
  310. Yanagimachi O, Ohmori H (1991) Ecological status of Pinus pumila scrub and the lower boundary of the Japanese alpine zone. Arctic Alpine Res 23:424–435Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gerhard Wieser
    • 1
    Email author
  • Friedrich-Karl Holtmeier
    • 2
  • William K. Smith
    • 3
  1. 1.Department of Alpine Timberline EcophysiologyBFWInnsbruckAustria
  2. 2.Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  3. 3.Department of BiologyWake Forest UniversityWinston-SalemUSA

Personalised recommendations