Skip to main content

Abstract

The link between protein synthesis and cancer was first suggested by Pianese in 1896, who observed that malignant cells contain larger and more numerous nucleoli than normal cells. Yet the role of translation in cancer biology has been largely overlooked in comparison with transcription. Nearly one century elapsed before the first report that ascribed oncogenic properties to a translation initiation factor was published. That factor is the eukaryotic translation initiation factor 4E (eIF4E). eIF4E binds the mRNA 5′ end and is critical for its translation. It has received much attention for its important biological functions, as well as for its involvement in cancer development and progression. Indeed, eIF4E possesses proto-oncogenic properties as its overexpression or hyperactivation leads to tumorigenesis. Increased levels of eIF4E are detected in as many as 30 % of human cancers across a wide variety of sites including head and neck, bladder, colon, breast, prostate, lung, and blood. In several studies, eIF4E overexpression or activation has been associated with poor disease prognosis. This chapter reviews the current knowledge regarding function, activity and regulation of eIF4E, as well as its binding partners, in relation to cancer etiology and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hereafter, percentages indicate the frequency of mutations in human cancers according to COSMIC database

References

  • Alain T, Lun X, Martineau Y, Sean P, Pulendran B, Petroulakis E, Zemp FJ, Lemay CG, Roy D, Bell JC et al. (2010) Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci U S A 107:1576–1581

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, Zammit D, Marcus V, Metrakos P, Voyer LA et al. (2012) eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res 72:6468–6476

    PubMed  CAS  Google Scholar 

  • Amaldi F, Pierandrei-Amaldi P (1997) TOP genes: a translationally controlled class of genes including those coding for ribosomal proteins. Prog Mol Subcell Biol 18:1–17

    PubMed  CAS  Google Scholar 

  • Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 4:691–699

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aravind L, Koonin EV (2000) Eukaryote-specific domains in translation initiation factors: implications for translation regulation and evolution of the translation system. Genome Res 10:1172–1184

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arias C, Walsh D, Harbell J, Wilson AC, Mohr I (2009) Activation of host translational control pathways by a viral developmental switch. PLoS Pathog 5:e1000334

    PubMed  PubMed Central  Google Scholar 

  • Armengol G, Rojo F, Castellvi J, Iglesias C, Cuatrecasas M, Pons B, Baselga J, Ramon y Cajal S (2007) 4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications. Cancer Res 67:7551–7555

    PubMed  CAS  Google Scholar 

  • Bader AG, Kang S, Zhao L, Vogt PK (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5:921–929

    PubMed  CAS  Google Scholar 

  • Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR et al. (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91:355–358

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berg M, Agesen TH, Thiis-Evensen E, Merok MA, Teixeira MR, Vatn MH, Nesbakken A, Skotheim RI, Lothe RA (2010) Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol Cancer 9:100

    PubMed  PubMed Central  Google Scholar 

  • Berkel HJ, Turbat-Herrera EA, Shi R, de Benedetti A (2001) Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol Biomarkers Prev 10:663–666

    PubMed  CAS  Google Scholar 

  • Bilanges B, Argonza-Barrett R, Kolesnichenko M, Skinner C, Nair M, Chen M, Stokoe D (2007) Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner. Mol Cell Biol 27:5746–5764

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bjur E, Larsson O, Yurchenko E, Zheng L, Gandin V, Topisirovic I, Li S, Wagner CR, Sonenberg N, Piccirillo CA (2013) Distinct translational control in CD4 + T cell subsets. PLoS Genet 9:e1003494

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blagden SP, Willis AE (2011) The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev Clin Oncol 8:280–291

    PubMed  CAS  Google Scholar 

  • Buxade M, Parra-Palau JL, Proud CG (2008) The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front Biosci 13:5359–5373

    PubMed  CAS  Google Scholar 

  • Byrnes K, White S, Chu Q, Meschonat C, Yu H, Johnson LW, Debenedetti A, Abreo F, Turnage RH, McDonald JC et al. (2006) High eIF4E, VEGF, and microvessel density in stage I to III breast cancer. Ann Surg 243:684–690; discussion 691–692

    PubMed  PubMed Central  Google Scholar 

  • Castellvi J, Garcia A, Rojo F, Ruiz-Marcellan C, Gil A, Baselga J, Ramon y Cajal S (2006) Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer 107:1801–1811

    PubMed  CAS  Google Scholar 

  • Cawley A, Warwicker J (2012) eIF4E-binding protein regulation of mRNAs with differential 5′-UTR secondary structure: a polyelectrostatic model for a component of protein-mRNA interactions. Nucleic Acids Research 40:7666–7675

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cen O, Longnecker R (2011) Rapamycin reverses splenomegaly and inhibits tumor development in a transgenic model of Epstein-Barr virus-related Burkitt’s lymphoma. Mol Cancer Ther 10:679–686

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ (2007) Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 110:278–286

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    PubMed  CAS  Google Scholar 

  • Chen CN, Hsieh FJ, Cheng YM, Lee PH, Chang KJ (2004) Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome. J Surg Oncol 86:22–27

    PubMed  CAS  Google Scholar 

  • Cho PF, Poulin F, Cho-Park YA, Cho-Park IB, Chicoine JD, Lasko P, Sonenberg N (2005) A new paradigm for translational control: inhibition via 5′-3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121:411–423

    PubMed  CAS  Google Scholar 

  • Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    PubMed  CAS  Google Scholar 

  • Coleman LJ, Peter MB, Teall TJ, Brannan RA, Hanby AM, Honarpisheh H, Shaaban AM, Smith L, Speirs V, Verghese ET et al. (2009) Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br J Cancer 100:1393–1399

    PubMed  CAS  PubMed Central  Google Scholar 

  • Colina R, Costa-Mattioli M, Dowling RJ, Jaramillo M, Tai LH, Breitbach CJ, Martineau Y, Larsson O, Rong L, Svitkin YV et al. (2008) Translational control of the innate immune response through IRF-7. Nature 452:323–328

    PubMed  CAS  Google Scholar 

  • Cope CL, Gilley R, Balmanno K, Sale MJ, Howarth KD, Hampson M, Smith PD, Guichard SM, Cook SJ (2014) Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. J Cell Sci 127:788–800

    Google Scholar 

  • Crew JP, Fuggle S, Bicknell R, Cranston DW, de Benedetti A, Harris AL (2000) Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br J Cancer 82:161–166

    PubMed  CAS  PubMed Central  Google Scholar 

  • Croft A, Tay KH, Boyd SC, Guo ST, Jiang CC, Lai F, Tseng HY, Jin L, Rizos H, Hersey P et al. (2014) Oncogenic activation of MEK/ERK primes melanoma cells for adaptation to endoplasmic reticulum stress. J Invest Dermatol 134:488–497

    Google Scholar 

  • Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC (2013) Human papillomavirus and cervical cancer. Lancet 382:889–899

    PubMed  Google Scholar 

  • Darveau A, Pelletier J, Sonenberg N (1985) Differential efficiencies of in vitro translation of mouse c-myc transcripts differing in the 5′ untranslated region. Proc Natl Acad Sci U S A 82:2315–2319

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199

    PubMed  CAS  Google Scholar 

  • De Benedetti A, Harris AL (1999) eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 31:59–72

    PubMed  CAS  Google Scholar 

  • Deffie A, Hao M, Montes de Oca Luna R, Hulboy DL, Lozano G (1995) Cyclin E restores p53 activity in contact-inhibited cells. Mol Cell Biol 15:3926–3933

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dong K, Wang R, Wang X, Lin F, Shen JJ, Gao P, Zhang HZ (2009) Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 113:443–456

    PubMed  CAS  Google Scholar 

  • Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, Wang X, Larsson O, Selvaraj A, Liu Y et al. (2010) mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328:1172–1176

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duncan R, Milburn SC, Hershey JW (1987) Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J Biol Chem 262:380–388

    PubMed  CAS  Google Scholar 

  • Etchison D, Milburn SC, Edery I, Sonenberg N, Hershey JW (1982) Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem 257:14806–14810

    PubMed  CAS  Google Scholar 

  • Fan D, Bitterman PB, Larsson O (2009a) Regulatory element identification in subsets of transcripts: comparison and integration of current computational methods. RNA 15:1469–1482

    CAS  Google Scholar 

  • Fan S, Ramalingam SS, Kauh J, Xu Z, Khuri FR, Sun SY (2009b) Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biol Ther 8:1463–1469

    Google Scholar 

  • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, and Shokat KM (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7:e38

    PubMed  Google Scholar 

  • Feoktistova K, Tuvshintogs E, Do A, Fraser CS (2013) Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc Natl Acad Sci U S A 110:13339–13344

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ferrandiz-Pulido C, Masferrer E, Toll A, Hernandez-Losa J, Mojal S, Pujol RM, Ramon YCS, de Torres I, Garcia-Patos V (2013) mTOR signaling pathway in penile squamous cell carcinoma: pmTOR and peIF4E over expression correlate with aggressive tumor behavior. J Urol 190:2288–2295

    Google Scholar 

  • Fletcher CM, Wagner G (1998) The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci 7:1639–1642

    PubMed  CAS  PubMed Central  Google Scholar 

  • Folkman J, Long DM Jr, Becker FF (1963) Growth and metastasis of tumor in organ culture. Cancer 16:453–467

    PubMed  CAS  Google Scholar 

  • Franklin S, Pho T, Abreo FW, Nassar R, De Benedetti A, Stucker FJ, Nathan CO (1999) Detection of the proto-oncogene eIF4E in larynx and hypopharynx cancers. Arch Otolaryngol Head Neck Surg 125:177–182

    PubMed  CAS  Google Scholar 

  • Frederick MJ, VanMeter AJ, Gadhikar MA, Henderson YC, Yao H, Pickering CC, Williams MD, El-Naggar AK, Sandulache V, Tarco E et al. (2011) Phosphoproteomic analysis of signaling pathways in head and neck squamous cell carcinoma patient samples. Am J Pathol 178:548–571

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fukuchi-Shimogori T, Ishii I, Kashiwagi K, Mashiba H, Ekimoto H, Igarashi K (1997) Malignant transformation by overproduction of translation initiation factor eIF4G. Cancer Res 57:5041–5044

    PubMed  CAS  Google Scholar 

  • Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury LA et al. (2010) eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci U S A 107:14134–14139

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fury MG, Lee NY, Sherman E, Ho AL, Rao S, Heguy A, Shen R, Korte S, Lisa D, Ganly I et al. (2013) A phase 1 study of everolimus + weekly cisplatin + intensity modulated radiation therapy in head-and-neck cancer. Int J Radiat Oncol Biol Phys 87:479–486

    PubMed  CAS  Google Scholar 

  • George A, Panda S, Kudmulwar D, Chhatbar SP, Nayak SC, Krishnan HH (2012) Hepatitis C virus NS5A binds to the mRNA cap-binding eukaryotic translation initiation 4F (eIF4F) complex and up-regulates host translation initiation machinery through eIF4E-binding protein 1 inactivation. J Biol Chem 287:5042–5058

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ghosh B, Benyumov AO, Ghosh P, Jia Y, Avdulov S, Dahlberg PS, Peterson M, Smith K, Polunovsky VA, Bitterman PB et al. (2009) Nontoxic chemical interdiction of the epithelial-to-mesenchymal transition by targeting cap-dependent translation. ACS Chem Biol 4:367–377

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15:2852–2864

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goetz C, Everson RG, Zhang LC, Gromeier M (2010) MAPK signal-integrating kinase controls cap-independent translation and cell type-specific cytotoxicity of an oncolytic poliovirus. Mol Ther 18:1937–1946

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gosselin P, Oulhen N, Jam M, Ronzca J, Cormier P, Czjzek M, Cosson B (2011) The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS. Nucleic Acids Res 39:3496–3503

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S, Sonenberg N (1998) A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18:334–342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Graff JR, Boghaert ER, De Benedetti A, Tudor DL, Zimmer CC, Chan SK, Zimmer SG (1995) Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts. Int J Cancer 60:255–263

    PubMed  CAS  Google Scholar 

  • Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN, Schwier P, Capen A, Goode RL, Dowless MS et al. (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 117: 2638–2648

    PubMed  CAS  PubMed Central  Google Scholar 

  • Graff, JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM, Parsons SH, Brail LH, Colligan BM, Koop JW et al. (2009) eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res 69:3866–3873

    PubMed  CAS  Google Scholar 

  • Graziani I, Eliasz S, De Marco MA, Chen Y, Pass HI, De May RM, Strack PR, Miele L, Bocchetta M (2008) Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res 68:9678–9685

    PubMed  CAS  Google Scholar 

  • Green AS, Grabar S, Tulliez M, Park S, Al-Nawakil C, Chapuis N, Jacque N, Willems L, Azar N, Ifrah N et al. (2012) The eukaryotic initiating factor 4E protein is overexpressed, but its level has no prognostic impact in acute myeloid leukaemia. Br J Haematol 156:547–550

    PubMed  CAS  Google Scholar 

  • Grifo JA, Tahara SM, Morgan MA, Shatkin AJ, Merrick WC (1983) New initiation factor activity required for globin mRNA translation. J Biol Chem 258: 5804–5810

    PubMed  CAS  Google Scholar 

  • Grzmil M, Morin P Jr, Lino MM, Merlo A, Frank S, Wang Y, Moncayo G, Hemmings BA (2011) MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-beta signaling pathway in human glioblastoma. Cancer Res 71:2392–2402

    PubMed  CAS  Google Scholar 

  • Haghighat A, Sonenberg N (1997) eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′-cap structure. J Biol Chem 272:21677–21680

    PubMed  CAS  Google Scholar 

  • Haghighat A, Mader S, Pause A, Sonenberg N (1995) Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J 14:5701–5709

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  • Hariri F, Arguello M, Volpon L, Culjkovic-Kraljacic B, Nielsen TH, Hiscott J, Mann KK, Borden KL (2013) The eukaryotic translation initiation factor eIF4E is a direct transcriptional target of NF-kappaB and is aberrantly regulated in acute myeloid leukemia. Leukemia 27:2047–2055

    Google Scholar 

  • Hayman TJ, Williams ES, Jamal M, Shankavaram UT, Camphausen K, Tofilon PJ (2012) Translation initiation factor eIF4E is a target for tumor cell radiosensitization. Cancer Res 72:2362–2372

    PubMed  CAS  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    PubMed  CAS  Google Scholar 

  • Heikkinen T, Korpela T, Fagerholm R, Khan S, Aittomaki K, Heikkila P, Blomqvist C, Carpen O, Nevanlinna H (2013) Eukaryotic translation initiation factor 4E (eIF4E) expression is associated with breast cancer tumor phenotype and predicts survival after anthracycline chemotherapy treatment. Breast Cancer Res Treat 141:79–88

    PubMed  CAS  Google Scholar 

  • Hiller DJ, Chu Q, Meschonat C, Panu L, Burton G, Li BD (2009) Predictive value of eIF4E reduction after neoadjuvant therapy in breast cancer. J Surg Res 156:265–269

    PubMed  CAS  Google Scholar 

  • Hiremath LS, Webb NR, Rhoads RE (1985) Immunological detection of the messenger RNA cap-binding protein. J Biol Chem 260:7843–7849

    PubMed  CAS  Google Scholar 

  • Holm N, Byrnes K, Johnson L, Abreo F, Sehon K, Alley J, Meschonat C, Md QC, Li BD (2008) A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in node-negative breast cancer. Ann Surg Oncol 15:3207–3215

    PubMed  Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    PubMed  CAS  Google Scholar 

  • Hou J, Lam F, Proud C, Wang S (2012) Targeting Mnks for cancer therapy. Oncotarget 3:118–131

    PubMed  PubMed Central  Google Scholar 

  • Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, Meyuhas O, Shokat KM, Ruggero D (2010) Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer cell 17:249–261

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ et al. (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485: 55–61

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hsu HS, Chen HW, Kao CL, Wu ML, Li AF, Cheng TH (2011) MDM2 is overexpressed and regulated by the eukaryotic translation initiation factor 4E (eIF4E) in human squamous cell carcinoma of esophagus. Ann Surg Oncol 18:1469–1477

    PubMed  Google Scholar 

  • Hu G, Gershon PD, Hodel AE, Quiocho FA (1999) mRNA cap recognition: dominant role of enhanced stacking interactions between methylated bases and protein aromatic side chains. Proc Natl Acad Sci U S A 96:7149–7154

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ilic N, Utermark T, Widlund HR, Roberts TM (2011) PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci U S A 108:E699–E708

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K et al. (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968

    PubMed  CAS  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    PubMed  CAS  Google Scholar 

  • Jacobson A, Favreau M (1983) Possible involvement of poly(A) in protein synthesis. Nucleic Acids Res 11:6353–6368

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang Y, Muschel RJ (2002) Regulation of matrix metalloproteinase-9 (MMP-9) by translational efficiency in murine prostate carcinoma cells. Cancer Res 62:1910–1914

    PubMed  CAS  Google Scholar 

  • Jiang H, Coleman J, Miskimins R, Miskimins WK (2003) Expression of constitutively active 4EBP-1 enhances p27Kip1 expression and inhibits proliferation of MCF7 breast cancer cells. Cancer Cell Int 3:2

    PubMed  PubMed Central  Google Scholar 

  • Jiang CC, Croft A, Tseng HY, Guo ST, Jin L, Hersey P, Zhang XD (2014) Repression of microRNA-768-3p by MEK/ERK signalling contributes to enhanced mRNA translation in human melanoma. Oncogene 33:2577–2588

    Google Scholar 

  • Jin T, George Fantus I, Sun J (2008) Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cell Signal 20:1697–1704

    PubMed  CAS  Google Scholar 

  • Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A, Callanan L, Schmidt EV (1996) An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol 16:4754–4764

    PubMed  CAS  PubMed Central  Google Scholar 

  • Joshi B, Cameron A, Jagus R (2004) Characterization of mammalian eIF4E-family members. Eur J Biochem 271:2189–2203

    PubMed  CAS  Google Scholar 

  • Joshi S, Platanias LC (2012) Mnk kinases in cytokine signaling and regulation of cytokine responses. Biomol Concepts 3:127–139

    PubMed  CAS  PubMed Central  Google Scholar 

  • Joshi S, Kaur S, Kroczynska B, Platanias LC (2010) Mechanisms of mRNA translation of interferon stimulated genes. Cytokine 52:123–127

    PubMed  CAS  Google Scholar 

  • Karni R, Gus Y, Dor Y, Meyuhas O, Levitzki A (2005) Active Src elevates the expression of beta-catenin by enhancement of cap-dependent translation. Mol Cell Biol 25:5031–5039

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A (1995) The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int J Cancer 64:27–31

    PubMed  CAS  Google Scholar 

  • Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65:785–790

    PubMed  CAS  Google Scholar 

  • Khanna-Gupta A, Abayasekara N, Levine M, Sun H, Virgilio M, Nia N, Halene S, Sportoletti P, Jeong JY, Pandolfi PP et al. (2012) Up-regulation of translation eukaryotic initiation factor 4E in nucleophosmin 1 haploinsufficient cells results in changes in CCAAT enhancer-binding protein alpha activity: implications in myelodysplastic syndrome and acute myeloid leukemia. J Biol Chem 287:32728–32737

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim YY, Von Weymarn L, Larsson O, Fan D, Underwood JM, Peterson MS, Hecht SS, Polunovsky VA, Bitterman PB (2009) Eukaryotic initiation factor 4E binding protein family of proteins: sentinels at a translational control checkpoint in lung tumor defense. Cancer Res 69:8455–8462

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kodali D, Rawal A, Ninan MJ, Patel MR, Mesa H, Knapp D, Schnitzer B, Kratzke RA, Gupta P (2011) Expression and phosphorylation of eukaryotic translation initiation factor 4E binding protein 1 in B-cell lymphomas and reactive lymphoid tissues. Arch Pathol Lab Med 135:365–371

    PubMed  CAS  Google Scholar 

  • Kolesnichenko M, Hong L, Liao R, Vogt PK, Sun P (2012) Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence. Cell Cycle 11:2391–2401

    PubMed  CAS  PubMed Central  Google Scholar 

  • Konicek BW, Stephens JR, McNulty AM, Robichaud N, Peery RB, Dumstorf CA, Dowless MS, Iversen PW, Parsons S, Ellis KE et al. (2011) Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res 71:1849–1857

    PubMed  CAS  Google Scholar 

  • Koromilas AE, Lazaris-Karatzas A, Sonenberg N (1992) mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J 11:4153–4158

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsson O, Perlman DM, Fan D, Reilly CS, Peterson M, Dahlgren C, Liang Z, Li S, Polunovsky VA, Wahlestedt C et al. (2006) Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an antiapoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res 34:4375–4386

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsson O, Li S, Issaenko OA, Avdulov S, Peterson M, Smith K, Bitterman PB, Polunovsky VA (2007) Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 67:6814–6824

    PubMed  CAS  Google Scholar 

  • Larsson O, Morita M, Topisirovic I, Alain T, Blouin MJ, Pollak M, Sonenberg N (2012) Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci U S A 109:8977–8982

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsson O, Tian B, Sonenberg N (2013) Toward a genome-wide landscape of translational control. Cold Spring Harb Perspect Biol 5:a012302

    Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345:544–547

    PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Smith MR, Frederickson RM, Jaramillo ML, Liu YL, Kung HF, Sonenberg N (1992) Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev 6:1631–1642

    PubMed  CAS  Google Scholar 

  • Lee JW, Choi JJ, Lee KM, Choi CH, Kim TJ, Lee JH, Kim BG, Ahn G, Song SY, Bae DS (2005) eIF-4E expression is associated with histopathologic grades in cervical neoplasia. Hum Pathol 36:1197–1203

    PubMed  CAS  Google Scholar 

  • Li BD, Liu L, Dawson M, De Benedetti A (1997) Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 79:2385–2390

    PubMed  CAS  Google Scholar 

  • Li BD, McDonald JC, Nassar R, De Benedetti A (1998) Clinical outcome in stage I to III breast carcinoma and eIF4E overexpression. Ann Surg 227:756–761; discussion 761–763

    Google Scholar 

  • Li BD, Gruner JS, Abreo F, Johnson LW, Yu H, Nawas S, McDonald JC, DeBenedetti A (2002) Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome. Ann Surg 235:732–738; discussion 738–739

    PubMed  PubMed Central  Google Scholar 

  • Li S, Takasu T, Perlman DM, Peterson MS, Burrichter D, Avdulov S, Bitterman PB, Polunovsky VA (2003) Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J Biol Chem 278:3015–3022

    PubMed  CAS  Google Scholar 

  • Li S, Perlman DM, Peterson MS, Burrichter D, Avdulov S, Polunovsky VA, Bitterman PB (2004) Translation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis. J Biol Chem 279:21312–21317

    PubMed  CAS  Google Scholar 

  • Li Y, Fan S, Koo J, Yue P, Chen ZG, Owonikoko TK, Ramalingam SS, Khuri FR, Sun SY (2012) Elevated expression of eukaryotic translation initiation factor 4E is associated with proliferation, invasion and acquired resistance to erlotinib in lung cancer. Cancer Biol Ther 13:272–280

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li S, Jia Y, Jacobson B, McCauley J, Kratzke R, Bitterman PB, Wagner CR (2013) Treatment of breast and lung cancer cells with a N-7 benzyl guanosine monophosphate tryptamine phosphoramidate pronucleotide (4Ei-1) results in chemosensitization to gemcitabine and induced eIF4E proteasomal degradation. Mol Pharm 10:523–531

    PubMed  CAS  Google Scholar 

  • Lim S, Saw TY, Zhang M, Janes MR, Nacro K, Hill J, Lim AQ, Chang CT, Fruman DA, Rizzieri DA et al. (2013) Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proc Natl Acad Sci U S A 110:E2298–E2307

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lin TA, Lawrence JC Jr (1996) Control of the translational regulators PHAS-I and PHAS-II by insulin and cAMP in 3T3-L1 adipocytes. J Biol Chem 271:30199–30204

    PubMed  CAS  Google Scholar 

  • Lin CJ, Cencic R, Mills JR, Robert F, Pelletier J (2008) c-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res 68:5326–5334

    PubMed  CAS  Google Scholar 

  • Lukas J, Herzinger T, Hansen K, Moroni MC, Resnitzky D, Helin K, Reed SI, Bartek J (1997) Cyclin E-induced S phase without activation of the pRb/E2F pathway. Genes Dev 11:1479–1492

    PubMed  CAS  Google Scholar 

  • Lukhele S, Bah A, Lin H, Sonenberg N, Forman-Kay JD (2013) Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface. Structure 21:2186–2196

    Google Scholar 

  • Lynch M, Fitzgerald C, Johnston KA, Wang S, Schmidt EV (2004) Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J Biol Chem 279:3327–3339

    PubMed  CAS  Google Scholar 

  • Lynch M, Chen L, Ravitz MJ, Mehtani S, Korenblat K, Pazin MJ, Schmidt EV (2005) hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation. Mol Cell Biol 25:6436–6453

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mader S, Lee H, Pause A, Sonenberg N (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N (2004) eIF4E-from translation to transformation. Oncogene 23:3172–3179

    PubMed  CAS  Google Scholar 

  • Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK, Sonenberg N (2007) Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PloS ONE 2:e242

    PubMed  PubMed Central  Google Scholar 

  • Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961

    PubMed  CAS  Google Scholar 

  • Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol cell 3:707–716

    Google Scholar 

  • Martin ME, Perez MI, Redondo C, Alvarez MI, Salinas M, Fando JL (2000) 4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int J Biochem Cell Biol 32:633–642

    PubMed  CAS  Google Scholar 

  • Martin D, Nguyen Q, Molinolo A, Gutkind JS (2014) Accumulation of dephosphorylated 4EBP after mTOR inhibition with rapamycin is sufficient to disrupt paracrine transformation by the KSHV vGPCR oncogene. Oncogene 33:2405–2412

    Google Scholar 

  • Martineau Y, Azar R, Bousquet C, Pyronnet S (2013) Anti-oncogenic potential of the eIF4E-binding proteins. Oncogene 32:671–677

    CAS  Google Scholar 

  • Martineau Y, Azar R, Muller D, Lasfargues C, El Khawand S, Anesia R, Pelletier J, Bousquet C, Pyronnet S (2014) Pancreatic tumours escape from translational control through 4E-BP1 loss. Oncogene 33:1367–1374

    Google Scholar 

  • Mathews M, Sonenberg N, Hershey JWB (2007) Translational control in biology and medicine, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Mathews-Greer J DBA, Tucker A, Dempsey S, Black D, Turbat-Herrera E (2002) A model for angiogenesis in HPV-mediated cervical neoplasia. J Appl Res 2:63–73

    Google Scholar 

  • Matthews-Greer J, Caldito G, de Benedetti A, Herrera GA, Dominguez-Malagon H, Chanona-Vilchis J, Turbat-Herrera EA (2005) eIF4E as a marker for cervical neoplasia. Appl Immunohistochem Mol Morphol 13:367–370

    PubMed  CAS  Google Scholar 

  • Matsuo H, Li H, McGuire AM, Fletcher CM, Gingras AC, Sonenberg N, Wagner G (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol 4:717–724

    PubMed  CAS  Google Scholar 

  • McClusky DR, Chu Q, Yu H, Debenedetti A, Johnson LW, Meschonat C, Turnage R, McDonald JC, Abreo F, Li BD (2005) A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in node-positive breast cancer. Ann Surg 242:584–590; discussion 590–592

    Google Scholar 

  • Melhem MF, Meisler AI, Finley GG, Bryce WH, Jones MO, Tribby II Pipas JM, Koski RA (1992) Distribution of cells expressing myc proteins in human colorectal epithelium, polyps, and malignant tumors. Cancer Res 52:5853–5864

    PubMed  CAS  Google Scholar 

  • Mendez R, Myers MG Jr, White MF, Rhoads RE (1996) Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol Cell Biol 16:2857–2864

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meric-Bernstam F, Chen H, Akcakanat A, Do KA, Lluch A, Hennessy BT, Hortobagyi GN, Mills GB, Gonzalez-Angulo AM (2012) Aberrations in translational regulation are associated with poor prognosis in hormone receptor-positive breast cancer. Breast Cancer Res 14:R138

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mizuno A, In Y, Fujita Y, Abiko F, Miyagawa H, Kitamura K, Tomoo K, Ishida T (2008) Importance of C-terminal flexible region of 4E-binding protein in binding with eukaryotic initiation factor 4E. FEBS Lett 582:3439–3444

    PubMed  CAS  Google Scholar 

  • Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A, Gross JD, Degterev A, Yuan J, Chorev M et al. (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128:257–267

    PubMed  CAS  Google Scholar 

  • Morita M, Ler LW, Fabian MR, Siddiqui N, Mullin M, Henderson VC, Alain T, Fonseca BD, Karashchuk G, Bennett CF et al. (2012) A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol 32:3585–3593

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mungamuri SK, Yang X, Thor AD, Somasundaram K (2006) Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 66:4715–4724

    PubMed  CAS  Google Scholar 

  • Murata T, Shimotohno K (2006) Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem 281:20788–20800

    PubMed  CAS  Google Scholar 

  • Nasr Z, Robert F, Porco JA, Jr., Muller WJ, Pelletier J (2013) eIF4F suppression in breast cancer affects maintenance and progression. Oncogene 33:861–871

    Google Scholar 

  • Nathan CO, Carter P, Liu L, Li BD, Abreo F, Tudor A, Zimmer SG, De Benedetti A (1997a) Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene 15:1087–1094

    CAS  Google Scholar 

  • Nathan CO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A (1997b) Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene 15:579–584

    CAS  Google Scholar 

  • Nathan CO, Franklin S, Abreo FW, Nassar R, De Benedetti A, Glass J (1999a) Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer. J Clin Oncol 17:2909–2914

    CAS  Google Scholar 

  • Nathan CO, Franklin S, Abreo FW, Nassar R, de Benedetti A, Williams J, Stucker FJ (1999b) Expression of eIF4E during head and neck tumorigenesis: possible role in angiogenesis. Laryngoscope 109:1253–1258

    CAS  Google Scholar 

  • Nathan CO, Amirghahari N, Abreo F, Rong X, Caldito G, Jones ML, Zhou H, Smith M, Kimberly D, Glass J (2004) Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res 10:5820–5827

    PubMed  CAS  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A 98:10314–10319

    PubMed  CAS  PubMed Central  Google Scholar 

  • Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wyslouch-Cieszynska A, Dadlez M, Gingras AC, Mak P, Darzynkiewicz E, Sonenberg N et al. (2002) Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5′ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol 319:615–635

    PubMed  CAS  Google Scholar 

  • Noske A, Lindenberg JL, Darb-Esfahani S, Weichert W, Buckendahl AC, Roske A, Sehouli J, Dietel M, Denkert C (2008) Activation of mTOR in a subgroup of ovarian carcinomas: correlation with p-eIF-4E and prognosis. Oncol Rep 20:1409–1417

    PubMed  CAS  Google Scholar 

  • O’Reilly KE, Warycha M, Davies MA, Rodrik V, Zhou XK, Yee H, Polsky D, Pavlick AC, Rosen N, Bhardwaj N et al. (2009) Phosphorylated 4E-BP1 is associated with poor survival in melanoma. Clin Cancer Res 15:2872–2878

    PubMed  PubMed Central  Google Scholar 

  • Oh KJ, Kalinina A, Park NH, Bagchi S (2006) Deregulation of eIF4E: 4E-BP1 in differentiated human papillomavirus-containing cells leads to high levels of expression of the E7 oncoprotein. J Virol 80:7079–7088

    PubMed  CAS  PubMed Central  Google Scholar 

  • Osborne TS, Ren L, Healey JH, Shapiro LQ, Chou AJ, Gorlick RG, Hewitt SM, Khanna C (2011) Evaluation of eIF4E expression in an osteosarcoma-specific tissue microarray. J Pediatr Hematol Oncol 33:524–528

    PubMed  CAS  PubMed Central  Google Scholar 

  • Osborne MJ, Volpon L, Kornblatt JA, Culjkovic-Kraljacic B, Baguet A, Borden KL (2013) eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition. Proc Natl Acad Sci U S A 110:3877–3882

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N (1994a) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767

    CAS  Google Scholar 

  • Pause A, Methot N, Svitkin Y, Merrick WC, Sonenberg N (1994b) Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J 13:1205–1215

    CAS  Google Scholar 

  • Pestova TV, Kolupaeva VG (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16:2906–2922

    PubMed  CAS  PubMed Central  Google Scholar 

  • Petricoin EF 3rd, Espina V, Araujo RP, Midura B, Yeung C, Wan X, Eichler GS, Johann DJ Jr, Qualman S, Tsokos M et al. (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440

    PubMed  CAS  Google Scholar 

  • Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N (2007) mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 96:R11–R15

    PubMed  Google Scholar 

  • Petroulakis E, Parsyan A, Dowling RJ, LeBacquer O, Martineau Y, Bidinosti M, Larsson O, Alain T, Rong L, Mamane Y et al. (2009) p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell 16:439–446

    PubMed  CAS  Google Scholar 

  • Pettersson F, Yau C, Dobocan MC, Culjkovic-Kraljacic B, Retrouvey H, Puckett R, Flores LM, Krop IE, Rousseau C, Cocolakis E et al. (2011) Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res 17:2874–2884

    PubMed  CAS  PubMed Central  Google Scholar 

  • Phillips A, Blaydes JP (2008) MNK1 and EIF4E are downstream effectors of MEKs in the regulation of the nuclear export of HDM2 mRNA. Oncogene 27:1645–1649

    PubMed  CAS  Google Scholar 

  • Pola C, Formenti SC, Schneider RJ (2013) Vitronectin-alphavbeta3 Integrin Engagement Directs Hypoxia-Resistant mTOR Activity and Sustained Protein Synthesis Linked to Invasion by Breast Cancer Cells. Cancer Res 73:4571–4578

    PubMed  CAS  Google Scholar 

  • Pourdehnad M, Truitt ML, Siddiqi IN, Ducker GS, Shokat KM, Ruggero D (2013) Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci U S A 110:11988–11993

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA (2001) Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci 26:225–229

    PubMed  CAS  Google Scholar 

  • Prevot D, Darlix JL, Ohlmann T (2003) Conducting the initiation of protein synthesis: the role of eIF4G. Biol Cell 95:141–156

    PubMed  CAS  Google Scholar 

  • Proshkin S, Rahmouni AR, Mironov A, Nudler E (2010) Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328:504–508

    PubMed  CAS  PubMed Central  Google Scholar 

  • Provenzani A, Fronza R, Loreni F, Pascale A, Amadio M, Quattrone A (2006) Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis 27:1323–1333

    PubMed  CAS  Google Scholar 

  • Ptushkina M, von der Haar T, Vasilescu S, Frank R, Birkenhager R, McCarthy JE (1998) Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5′ cap in yeast involves a site partially shared by p20. EMBO J 17: 4798–4808

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N (1999) Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 18:270–279

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC (2003) Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell 12:889–901

    PubMed  CAS  Google Scholar 

  • Robert F, Pelletier J (2009) Translation initiation: a critical signalling node in cancer. Expert Opin Ther Targets 13:1279–1293

    PubMed  CAS  Google Scholar 

  • Robichaud N, Del Rincon SV, Huor B, Alain T, Petruccelli LA, Hearnden J, Goncalves C, Grotegut S, Spruck CH, Furic L, Larsson O, Muller WJ, Miller WH, Sonenberg N. (2014) Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene (Epub 2014 June 10)

    PubMed  CAS  Google Scholar 

  • Rojo F, Najera L, Lirola J, Jimenez J, Guzman M, Sabadell MD, Baselga J, Ramon y Cajal S (2007) 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 13:81–89

    PubMed  CAS  Google Scholar 

  • Rom E, Kim HC, Gingras AC, Marcotrigiano J, Favre D, Olsen H, Burley SK, Sonenberg N (1998) Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein. J Biol Chem 273:13104–13109

    PubMed  CAS  Google Scholar 

  • Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV (1993) Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 13:7358–7363

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 270:21176–21180

    PubMed  CAS  Google Scholar 

  • Rosenwald IB, Chen JJ, Wang S, Savas L, London IM, Pullman J (1999) Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 18:2507–2517

    PubMed  CAS  Google Scholar 

  • Rosenwald IB, Hutzler MJ, Wang S, Savas L, Fraire AE (2001) Expression of eukaryotic translation initiation factors 4E and 2alpha is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer 92:2164–2171

    PubMed  CAS  Google Scholar 

  • Rousseau D, Gingras AC, Pause A, Sonenberg N (1996a) The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13:2415–2420

    CAS  Google Scholar 

  • Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N (1996b) Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci U S A 93:1065–1070

    CAS  Google Scholar 

  • Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, Pandolfi PP (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med 10:484–486

    PubMed  CAS  Google Scholar 

  • Saito H, Hayday AC, Wiman K, Hayward WS, Tonegawa S (1983) Activation of the c-myc gene by translocation: a model for translational control. Proc Natl Acad Sci U S A 80:7476–7480

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salehi Z, Mashayekhi F (2006) Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem 39:404–409

    PubMed  CAS  Google Scholar 

  • Salehi Z, Mashayekhi F, Shahosseini F (2007) Significance of eIF4E expression in skin squamous cell carcinoma. Cell Biol Int 31:1400–1404

    PubMed  CAS  Google Scholar 

  • Santhanam AN, Bindewald E, Rajasekhar VK, Larsson O, Sonenberg N, Colburn NH, Shapiro BA (2009) Role of 3′UTRs in the translation of mRNAs regulated by oncogenic eIF4E-a computational inference. PloS ONE 4:e4868

    PubMed  PubMed Central  Google Scholar 

  • Scheper GC, Proud CG (2002) Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 269:5350–5359

    PubMed  CAS  Google Scholar 

  • Scheper GC, van Kollenburg B, Hu J, Luo Y, Goss DJ, Proud CG (2002) Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J Biol Chem 277:3303–3309

    PubMed  CAS  Google Scholar 

  • Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    PubMed  Google Scholar 

  • Scott PA, Smith K, Poulsom R, De Benedetti A, Bicknell R, Harris AL (1998) Differential expression of vascular endothelial growth factor mRNA vs protein isoform expression in human breast cancer and relationship to eIF-4E. Br J Cancer 77:2120–2128

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14:2501–2514

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seki N, Takasu T, Mandai K, Nakata M, Saeki H, Heike Y, Takata I, Segawa Y, Hanafusa T, Eguchi K (2002) Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clin Cancer Res 8:3046–3053

    PubMed  CAS  Google Scholar 

  • Seki N, Takasu T, Sawada S, Nakata M, Nishimura R, Segawa Y, Shibakuki R, Hanafusa T, Eguchi K (2010) Prognostic significance of expression of eukaryotic initiation factor 4E and 4E binding protein 1 in patients with pathological stage I invasive lung adenocarcinoma. Lung Cancer 70:329–334

    PubMed  Google Scholar 

  • Shang ZF, Yu L, Li B, Tu WZ, Wang Y, Liu XD, Guan H, Huang B, Rang WQ, Zhou PK (2012) 4E-BP1 participates in maintaining spindle integrity and genomic stability via interacting with PLK1. Cell Cycle 11:3463–3471

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shepherd C, Banerjee L, Cheung CW, Mansour MR, Jenkinson S, Gale RE, Khwaja A (2013) PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia 27:650–660

    PubMed  CAS  Google Scholar 

  • Shuda M, Kwun HJ, Feng H, Chang Y, Moore PS (2011) Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J Clin Invest 121:3623–3634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Slepenkov SV, Darzynkiewicz E, Rhoads RE (2006) Stopped-flow kinetic analysis of eIF4E and phosphorylated eIF4E binding to cap analogs and capped oligoribonucleotides: evidence for a one-step binding mechanism. J Biol Chem 281:14927–14938

    PubMed  CAS  Google Scholar 

  • Slepenkov SV, Korneeva NL, Rhoads RE (2008) Kinetic mechanism for assembly of the m7GpppG.eIF4E.eIF4G complex. J Biol Chem 283:25227–25237

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sonenberg N (2008) eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol 86:178–183

    PubMed  CAS  Google Scholar 

  • Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sonenberg N, Morgan MA, Merrick WC, Shatkin AJ (1978) A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′-terminal cap in mRNA. Proc Natl Acad Sci U S A 75:4843–4847

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sonenberg N, Guertin D, Cleveland D, Trachsel H (1981) Probing the function of the eucaryotic 5′ cap structure by using a monoclonal antibody directed against cap-binding proteins. Cell 27:563–572

    PubMed  CAS  Google Scholar 

  • Song Y, Lu B (2011) Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila. Genes Dev 25:2644–2658

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sorrells DL, Black DR, Meschonat C, Rhoads R, De Benedetti A, Gao M, Williams BJ, Li BD (1998) Detection of eIF4E gene amplification in breast cancer by competitive PCR. Ann Surg Oncol 5:232–237

    PubMed  CAS  Google Scholar 

  • Sorrells DL, Ghali GE, Meschonat C, DeFatta RJ, Black D, Liu L, De Benedetti A, Nathan CO, Li BD (1999) Competitive PCR to detect eIF4E gene amplification in head and neck cancer. Head Neck 21:60–65

    PubMed  CAS  Google Scholar 

  • Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G, Ranieri E, Gesualdo L, Schena FP, Grandaliano G (2005) Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 352:1317–1323

    PubMed  CAS  Google Scholar 

  • Stanford MM, Barrett JW, Nazarian SH, Werden S, McFadden G (2007) Oncolytic virotherapy synergism with signaling inhibitors: Rapamycin increases myxoma virus tropism for human tumor cells. J Virol 81:1251–1260

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sunavala-Dossabhoy G, Fowler M, De Benedetti A (2004) Translation of the radioresistance kinase TLK1B is induced by gamma-irradiation through activation of mTOR and phosphorylation of 4E-BP1. BMC Mol Biol 5:1

    PubMed  PubMed Central  Google Scholar 

  • Sunavala-Dossabhoy G, Palaniyandi S, Clark C, Nathan CO, Abreo FW, Caldito G (2011) Analysis of eIF4E and 4EBP1 mRNAs in head and neck cancer. Laryngoscope 121:2136–2141

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ, Sonenberg N (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7:382–394

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tejada S, Lobo MV, Garcia-Villanueva M, Sacristan S, Perez-Morgado MI, Salinas M, Martin ME (2009) Eukaryotic initiation factors (eIF) 2alpha and 4E expression, localization, and phosphorylation in brain tumors. J Histochem Cytochem 57:503–512

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023–8032

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109–113

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tomoo K, Matsushita Y, Fujisaki H, Abiko F, Shen X, Taniguchi T, Miyagawa H, Kitamura K, Miura K, Ishida T (2005) Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. Biochim Biophys Acta 1753:191–208

    PubMed  CAS  Google Scholar 

  • Topisirovic I, Sonenberg N (2011) mRNA Translation and Energy Metabolism in Cancer: The Role of the MAPK and mTORC1 Pathways. Cold Spring Harb Symp Quant Biol 76:355–367

    Google Scholar 

  • Topisirovic I, Ruiz-Gutierrez M, Borden KL (2004) Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 64:8639–8642

    PubMed  CAS  Google Scholar 

  • Topisirovic I, Siddiqui N, Orolicki S, Skrabanek LA, Tremblay M, Hoang T, Borden KL (2009) Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer. Mol Cell Biol 29:1152–1162

    PubMed  CAS  PubMed Central  Google Scholar 

  • Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ (2011) Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA 2:277–298

    PubMed  CAS  Google Scholar 

  • Trigka EA, Levidou G, Saetta AA, Chatziandreou I, Tomos P, Thalassinos N, Anastasiou N, Spartalis E, Kavantzas N, Patsouris E et al. (2013) A detailed immunohistochemical analysis of the PI3K/AKT/mTOR pathway in lung cancer: correlation with PIK3CA, AKT1, K-RAS or PTEN mutational status and clinicopathological features. Oncol Rep 30:623–636

    PubMed  CAS  Google Scholar 

  • Tsukiyama-Kohara K, Vidal SM, Gingras AC, Glover TW, Hanash SM, Heng H, Sonenberg N (1996) Tissue distribution, genomic structure, and chromosome mapping of mouse and human eukaryotic initiation factor 4E-binding proteins 1 and 2. Genomics 38:353–363

    PubMed  CAS  Google Scholar 

  • Ueda T, Sasaki M, Elia AJ, Chio II, Hamada K, Fukunaga R, Mak TW (2010) Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A 107:13984–13990

    PubMed  CAS  PubMed Central  Google Scholar 

  • Umenaga Y, Paku KS, In Y, Ishida T, Tomoo K (2011) Identification and function of the second eIF4E-binding region in N-terminal domain of eIF4G: comparison with eIF4E-binding protein. Biochem Biophys Res Commun 414:462–467

    PubMed  CAS  Google Scholar 

  • Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR, Payette J, Holcik M, Pause A, Lee S (2012) An oxygen-regulated switch in the protein synthesis machinery. Nature 486:126–129

    PubMed  CAS  Google Scholar 

  • Uniacke J, Perera JK, Lachance G, Francisco CB, Lee S (2014) Cancer cells exploit eIF4E2-directed synthesis of hypoxia response proteins to drive tumor progression. Cancer Res 74:1379–1389

    Google Scholar 

  • Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L, Claret FX, Rassidakis GZ (2006) Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 66:6589–6597

    PubMed  CAS  Google Scholar 

  • Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16:318–330

    PubMed  CAS  Google Scholar 

  • von Der Haar T, Ball PD, McCarthy JE (2000) Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5′-Cap by domains of eIF4G. J Biol Chem 275:30551–30555

    Google Scholar 

  • Wagner CR, Iyer VV, McIntee EJ (2000) Pronucleotides: toward the in vivo delivery of antiviral and anticancer nucleotides. Med Res Rev 20:417–451

    PubMed  CAS  Google Scholar 

  • Walsh D, Mathews MB, Mohr I (2013) Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 5:a012351

    Google Scholar 

  • Wang S, Rosenwald IB, Hutzler MJ, Pihan GA, Savas L, Chen JJ, Woda BA (1999) Expression of the eukaryotic translation initiation factors 4E and 2alpha in non-Hodgkin’s lymphomas. Am J Pathol 155:247–255

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B (2013a) Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci 14:10015–10041

    Google Scholar 

  • Wang S, Pang T, Gao M, Kang H, Ding W, Sun X, Zhao Y, Zhu W, Tang X, Yao Y et al. (2013b) HPV E6 induces eIF4E transcription to promote the proliferation and migration of cervical cancer. FEBS Lett 587:690–697

    CAS  Google Scholar 

  • Wang XL, Cai HP, Ge JH, Su XF (2012) Detection of eukaryotic translation initiation factor 4E and its clinical significance in hepatocellular carcinoma. World J Gastroenterol 18:2540–2544

    PubMed  CAS  PubMed Central  Google Scholar 

  • Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA (1999) Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 19:1871–1880

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, Cordon-Cardo C, Pelletier J, Lowe SW (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428:332–337

    PubMed  CAS  Google Scholar 

  • Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Teruya-Feldstein J, Pelletier J et al. (2007) Dissecting eIF4E action in tumorigenesis. Genes Dev 21:3232–3237

    PubMed  CAS  PubMed Central  Google Scholar 

  • West MJ, Sullivan NF, Willis AE (1995) Translational upregulation of the c-myc oncogene in Bloom’s syndrome cell lines. Oncogene 11:2515–2524

    PubMed  CAS  Google Scholar 

  • Wu M, Liu Y, Di X, Kang H, Zeng H, Zhao Y, Cai K, Pang T, Wang S, Yao Y et al. (2013) EIF4E over-expresses and enhances cell proliferation and cell cycle progression in nasopharyngeal carcinoma. Med Oncol 30:400

    PubMed  Google Scholar 

  • Yanagiya A, Svitkin YV, Shibata S, Mikami S, Imataka H, Sonenberg N (2009) Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol Cell Biol 29:1661–1669

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yanagiya A, Suyama E, Adachi H, Svitkin YV, Aza-Blanc P, Imataka H, Mikami S, Martineau Y, Ronai ZA, Sonenberg N (2012) Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol Cell 46:847–858

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang SX, Hewitt SM, Steinberg SM, Liewehr DJ, Swain SM (2007) Expression levels of eIF4E, VEGF, and cyclin D1, and correlation of eIF4E with VEGF and cyclin D1 in multi-tumor tissue microarray. Oncol Rep 17:281–287

    PubMed  CAS  Google Scholar 

  • Yang N, Huang J, Greshock J, Liang S, Barchetti A, Hasegawa K, Kim S, Giannakakis A, Li C, O’Brien-Jenkins A et al. (2008) Transcriptional regulation of PIK3CA oncogene by NF-kappaB in ovarian cancer microenvironment. PloS ONE 3:e1758

    Google Scholar 

  • Yi T, Papadopoulos E, Hagner PR, Wagner G (2013) Hypoxia-inducible factor-1alpha (HIF-1alpha) promotes cap-dependent translation of selective mRNAs through up-regulating initiation factor eIF4E1 in breast cancer cells under hypoxia conditions. J Biol Chem 288:18732–18742

    Google Scholar 

  • Yoshizawa A, Fukuoka J, Shimizu S, Shilo K, Franks TJ, Hewitt SM, Fujii T, Cordon-Cardo C, Jen J, Travis WD (2010) Overexpression of phospho-eIF4E is associated with survival through AKT pathway in non-small cell lung cancer. Clin Cancer Res 16:240–248

    PubMed  CAS  Google Scholar 

  • Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang YJ, Duan Y, Zheng XF (2011) Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today 16:325–331

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao Y, Liu W, Zhou S, Zhou J, Sun H (2005) Relationship between eukaryotic translation initiation factor 4E and malignant angiogenesis in non-Hodgkin lymphoma. J Huazhong Univ Sci Technolog Med Sci 25:636–638, 654

    Google Scholar 

  • Zhou X, Tan M, Stone Hawthorne V, Klos KS, Lan KH, Yang Y, Yang W, Smith TL, Shi D, Yu D (2004) Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10:6779–6788

    PubMed  CAS  Google Scholar 

  • Zhou S, Wang GP, Liu C, Zhou M (2006) Eukaryotic initiation factor 4E (eIF4E) and angiogenesis: prognostic markers for breast cancer. BMC Cancer 6:231

    PubMed  PubMed Central  Google Scholar 

  • Zhou FF, Yan M, Guo GF, Wang F, Qiu HJ, Zheng FM, Zhang Y, Liu Q, Zhu XF, Xia LP (2011) Knockdown of eIF4E suppresses cell growth and migration, enhances chemosensitivity and correlates with increase in Bax/Bcl-2 ratio in triple-negative breast cancer cells. Med Oncol 28:1302–1307

    PubMed  CAS  Google Scholar 

  • Zhu N, Gu L, Findley HW, Zhou M (2005) Transcriptional repression of the eukaryotic initiation factor 4E gene by wild type p53. Biochem Biophys Res Commun 335:1272–1279

    PubMed  CAS  Google Scholar 

  • Zindy P, Berge Y, Allal B, Filleron T, Pierredon S, Cammas A, Beck S, Mhamdi L, Fan L, Favre G et al. (2011) Formation of the eIF4F translation-initiation complex determines sensitivity to anticancer drugs targeting the EGFR and HER2 receptors. Cancer Res 71:4068–4073

    PubMed  CAS  Google Scholar 

  • Zuberek J, Wyslouch-Cieszynska A, Niedzwiecka A, Dadlez M, Stepinski J, Augustyniak W, Gingras AC, Zhang Z, Burley SK, Sonenberg N et al. (2003) Phosphorylation of eIF4E attenuates its interaction with mRNA 5′ cap analogs by electrostatic repulsion: intein-mediated protein ligation strategy to obtain phosphorylated protein. RNA 9:52–61

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zuberek J, Kubacka D, Jablonowska A, Jemielity J, Stepinski J, Sonenberg N, Darzynkiewicz E (2007) Weak binding affinity of human 4EHP for mRNA cap analogs. RNA 13:691–697

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Nadeem Siddiqui (GCRC-McGill University) for his helpful insights on eIF4E structure and function and Dr. Armen Parsyan for editing this manuscript. This work was supported by The Susan G. Komen Breast Cancer Foundation (IIR12224057), the Canadian Cancer Society (2010-700377) and the Canadian Institutes of Health Research (MOP-7214). N.S. is a Howard Hughes Medical Institute International Scholar. N.R. was supported by scholarships from the Fonds de la Recherche en Santé du Québec (20874), the Canadian Institutes of Health Research (220151) and the Vanier Canada Graduate Scholarship program (267839).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Robichaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Robichaud, N., Sonenberg, N. (2014). eIF4E and Its Binding Proteins. In: Parsyan, A. (eds) Translation and Its Regulation in Cancer Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9078-9_4

Download citation

Publish with us

Policies and ethics