Skip to main content

Sarcomas

  • Chapter
  • First Online:
  • 1493 Accesses

Abstract

Sarcomas, as opposed to carcinoma, are rare forms of human cancer comprising less than 1 % of adult cancers. While represented by a broad range of entities, sarcomas share a common ground that is a mesenchymal origin of the tumors. With the understanding of these various types of sarcomas at the molecular level recently gaining its momentum, the role of translation in the pathobiology of this group of diseases started to uncover, pointing at a common theme: the activation of the mTOR pathway with subsequent derepression of the function of eIF4E via 4E-BPs and the activation of the proproliferative translation program. In this chapter, we, for the first time, summarize the current knowledge regarding translation, its regulation, as well as diagnostic and therapeutic potential in various types of sarcomas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barnhart BC, Lam JC, Young RM, Houghton PJ, Keith B, Simon MC (2008) Effects of 4E-BP1 expression on hypoxic cell cycle inhibition and tumor cell proliferation and survival. Cancer Biol Ther 7:1441–1449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beevers CS, Li F, Liu L, Huang S (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119:757–764

    Article  PubMed  CAS  Google Scholar 

  • Beevers CS, Chen L, Liu L, Luo Y, Webster NJ, Huang S (2009) Curcumin disrupts the Mammalian target of rapamycin-raptor complex. Cancer Res 69:1000–1008

    Article  PubMed  CAS  Google Scholar 

  • Beevers CS, Zhou H, Huang S (2013) Hitting the golden TORget: curcumin’s effects on mTOR signaling. Anticancer Agents Med Chem 13:988–994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bhatt AP, Damania B (2012) AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol 3:401

    PubMed  PubMed Central  Google Scholar 

  • Cen L, Arnoczky KJ, Hsieh FC, Lin HJ, Qualman SJ, Yu S, Xiang H, Lin J (2007) Phosphorylation profiles of protein kinases in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 20:936–946

    Article  PubMed  CAS  Google Scholar 

  • Chawla SP, Staddon AP, Baker LH, Schuetze SM, Tolcher AW, D’Amato GZ, Blay JY, Mita MM, Sankhala KK, Berk L et al (2012) Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone and soft tissue sarcomas. J Clin Oncol 30:78–84

    Article  PubMed  CAS  Google Scholar 

  • Conti A, Espina V, Chiechi A, Magagnoli G, Novello C, Pazzaglia L, Quattrini I, Picci, P, Liotta LA, Benassi MS (2014) Mapping protein signal pathway interaction in sarcoma bone metastasis: linkage between rank, metalloproteinases turnover and growth factor signaling pathways. Clin Exp Metastasis 31:15–24. doi: 10.1007/s10585-013-9605-6

    Google Scholar 

  • Datta B, Datta R, Mukherjee S, Zhang Z (1999) Increased phosphorylation of eukaryotic initiation factor 2alpha at the G2/M boundary in human osteosarcoma cells correlates with deglycosylation of p67 and a decreased rate of protein synthesis. Exp Cell Res 250:223–230

    Article  PubMed  CAS  Google Scholar 

  • Demetri GD, Chawla SP, Ray-Coquard I, Le Cesne A, Staddon AP, Milhem MM, Penel N, Riedel RF, Bui-Nguyen B, Cranmer LD et al (2013) Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J Clin Oncol 31:2485–2492

    Article  PubMed  CAS  Google Scholar 

  • Demicco EG, Torres KE, Ghadimi MP, Colombo C, Bolshakov S, Hoffman A, Peng T, Bovee JV, Wang WL, Lev D et al (2012) Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Mod Pathol 25:212–221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dickson MA, Tap WD, Keohan ML, D’Angelo SP, Gounder MM, Antonescu CR, Landa J, Qin LX, Rathbone DD, Condy MM et al (2013) Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol 31:2024–2028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ding L, Zhang X, Zhao M, Qu Z, Huang S, Dong M, Gao F (2012) An essential role of PDCD4 in progression and malignant proliferation of gastrointestinal stromal tumors. Med Oncol 29:1758–1764

    Article  PubMed  CAS  Google Scholar 

  • Dobashi Y, Suzuki S, Sato E, Hamada Y, Yanagawa T, Ooi A (2009) EGFR-dependent and independent activation of Akt/mTOR cascade in bone and soft tissue tumors. Mod Pathol 22:1328–1340

    Article  PubMed  CAS  Google Scholar 

  • Dudkin L, Dilling MB, Cheshire PJ, Harwood FC, Hollingshead M, Arbuck SG, Travis R, Sausville EA, Houghton PJ (2001) Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res 7:1758–1764

    PubMed  CAS  Google Scholar 

  • Engstrom K, Willen H, Kabjorn-Gustafsson C, Andersson C, Olsson M, Goransson M, Jarnum S, Olofsson A, Warnhammar E, Aman P (2006) The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol 168:1642–1653

    Article  PubMed  PubMed Central  Google Scholar 

  • Fletcher CD (2014) The evolving classification of soft tissue tumours—an update based on the new 2013 WHO classification. Histopathology. 64:2–11. doi: 10.1111/his.12267

    Google Scholar 

  • Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (eds) (2013) World Health Organization classification of tumours of soft tissue and bone, 4th edn. IARC Press, Lyon

    Google Scholar 

  • Fritz A, Percy C, Jack A, Shanmugarathan S, Sobin L, Parkin DM, Whelan S (eds) (2000) International classification of diseases for oncology, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Haller F, Lobke C, Ruschhaupt M, Schulten HJ, Schwager S, Gunawan B, Armbrust T, Langer C, Ramadori G, Sultmann H et al (2008) Increased KIT signalling with up-regulation of cyclin D correlates to accelerated proliferation and shorter disease-free survival in gastrointestinal stromal tumours (GISTs) with KIT exon 11 deletions. J Pathol 216:225–235

    Article  PubMed  CAS  Google Scholar 

  • Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A et al (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299:708–710

    Article  PubMed  CAS  Google Scholar 

  • Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    Article  PubMed  CAS  Google Scholar 

  • Holz MK, Ballif BA, Gygi SP, Blenis J (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569–580

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H, Houghton PJ (2003) Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 11:1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Shu, L, Easton J, Harwood FC, Germain GS, Ichijo H, Houghton PJ (2004) Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity. J Biol Chem 279:36490–36496

    Article  PubMed  CAS  Google Scholar 

  • Italiano A, Chen CL, Thomas R, Breen M, Bonnet F, Sevenet N, Longy M, Maki RG, Coindre JM, Antonescu CR (2012) Alterations of the p53 and PIK3CA/AKT/mTOR pathways in angiosarcomas: a pattern distinct from other sarcomas with complex genomics. Cancer 118:5878–5887

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jones KB, Su L, Jin H, Lenz C, Randall RL, Underhill TM, Nielsen TO, Sharma S, Capecchi MR (2013) SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas. Oncogene 32:2365–2371, 2375, e2361–e2365

    Google Scholar 

  • Jothi M, Mal M, Keller C, Mal AK (2013) Small molecule inhibition of PAX3-FOXO1 through AKT activation suppresses malignant phenotypes of alveolar rhabdomyosarcoma. Mol Cancer Ther 12:2663–2674

    Article  PubMed  CAS  Google Scholar 

  • Kuang E, Fu B, Liang Q, Myoung J, Zhu F (2011) Phosphorylation of eukaryotic translation initiation factor 4B (EIF4B) by open reading frame 45/p90 ribosomal S6 kinase (ORF45/RSK) signaling axis facilitates protein translation during Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. J Biol Chem 286:41171–41182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lahat G, Dhuka AR, Hallevi H, Xiao L, Zou C, Smith KD, Phung TL, Pollock RE, Benjamin R, Hunt KK et al (2010) Angiosarcoma: clinical and molecular insights. Ann Surg 251:1098–1106

    Article  PubMed  Google Scholar 

  • Le X, Pugach EK, Hettmer S, Storer NY, Liu J, Wills AA, DiBiase A, Chen EY, Ignatius MS, Poss KD et al (2013) A novel chemical screening strategy in zebrafish identifies common pathways in embryogenesis and rhabdomyosarcoma development. Development 140:2354–2364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lekmine F, Sassano A, Uddin S, Smith J, Majchrzak B, Brachmann SM, Hay N, Fish EN, Platanias LC (2004) Interferon-gamma engages the p70 S6 kinase to regulate phosphorylation of the 40S S6 ribosomal protein. Exp Cell Res 295:173–182

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Chen L, Chung J, Huang S (2008) Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27:4998–5010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu L, Chen L, Luo Y, Chen W, Zhou H, Xu B, Han X, Shen T, Huang S (2010) Rapamycin inhibits IGF-1 stimulated cell motility through PP2A pathway. PLoS ONE 5:e10578

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin D, Nguyen Q, Molinolo A, Gutkind JS (2013) Accumulation of dephosphorylated 4EBP after mTOR inhibition with rapamycin is sufficient to disrupt paracrine transformation by the KSHV vGPCR oncogene. Oncogene. doi: 10.1038/onc.2013.193

    Google Scholar 

  • Murai A, Abou Asa S, Kodama A, Sakai H, Hirata A, Yanai T (2012a) Immunohistochemical analysis of the Akt/mTOR/4E-BP1 signalling pathway in canine haemangiomas and haemangiosarcomas. J Comp Pathol 147:430–440

    Article  CAS  Google Scholar 

  • Murai A, Asa SA, Kodama A, Hirata A, Yanai T, Sakai H (2012b) Constitutive phosphorylation of the mTORC2/Akt/4E-BP1 pathway in newly derived canine hemangiosarcoma cell lines. BMC Vet Res 8:128

    Article  CAS  Google Scholar 

  • Okuno S, Bailey H, Mahoney MR, Adkins D, Maples W, Fitch T, Ettinger D, Erlichman C, Sarkaria JN (2011) A phase 2 study of temsirolimus (CCI-779) in patients with soft tissue sarcomas: a study of the Mayo phase 2 consortium (P2C). Cancer 117:3468–3475

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, ­Ludwig DL et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508

    Article  PubMed  PubMed Central  Google Scholar 

  • Osborne TS, Ren L, Healey JH, Shapiro LQ, Chou AJ, Gorlick RG, Hewitt SM, Khanna C (2011) Evaluation of eIF4E expression in an osteosarcoma-specific tissue microarray. J Pediatr ­Hematol Oncol 33:524–528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pan Q, Luo X, Chegini N (2010) microRNA 21: response to hormonal therapies and regulatory function in leiomyoma, transformed leiomyoma and leiomyosarcoma cells. Mol Hum Reprod 16:215–227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pawlowski KM, Majewska A, Szyszko K, Dolka I, Motyl T, Krol M (2011) Gene expression pattern in canine mammary osteosarcoma. Pol J Vet Sci 14:11–20

    PubMed  CAS  Google Scholar 

  • Perez J, Decouvelaere AV, Pointecouteau T, Pissaloux D, Michot JP, Besse A, Blay JY, Dutour A (2012) Inhibition of chondrosarcoma growth by mTOR inhibitor in an in vivo syngeneic rat model. PLoS ONE 7:e32458

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perez-Mancera PA, Vicente-Duenas C, Gonzalez-Herrero I, Sanchez-Martin M, Flores-Corral T, Sanchez-Garcia I (2007) Fat-specific FUS-DDIT3-transgenic mice establish PPARgamma inactivation is required to liposarcoma development. Carcinogenesis 28:2069–2073

    Article  PubMed  CAS  Google Scholar 

  • Perez-Mancera PA, Bermejo-Rodriguez C, Sanchez-Martin M, Abollo-Jimenez F, Pintado B, Sanchez-Garcia I (2008) FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E. PLoS ONE 3:e2569

    Article  PubMed  PubMed Central  Google Scholar 

  • Petricoin EF 3rd, Espina V, Araujo RP, Midura B, Yeung C, Wan X, Eichler GS, Johann DJ Jr, Qualman S, Tsokos M et al (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440

    Article  PubMed  CAS  Google Scholar 

  • Ray-Coquard I, Blay JY, Italiano A, Le Cesne A, Penel N, Zhi J, Heil F, Rueger R, Graves B, Ding M et al (2012) Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol 13:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Renshaw J, Taylor KR, Bishop R, Valenti M, De Haven Brandon A, Gowan S, Eccles SA, Ruddle RR, Johnson LD, Raynaud FI et al (2013) Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin Cancer Res 19:5940–5951

    Article  PubMed  CAS  Google Scholar 

  • Rios-Moreno MJ, Jaramillo S, Diaz-Delgado M, Sanchez-Leon M, Trigo-Sanchez I, Padillo JP, Amerigo J, Gonzalez-Campora R (2011) Differential activation of MAPK and PI3K/AKT/mTOR pathways and IGF1R expression in gastrointestinal stromal tumors. Anticancer Res 31:3019–3025

    PubMed  CAS  Google Scholar 

  • Robinson DR, Wu YM, Kalyana-Sundaram S, Cao X, Lonigro RJ, Sung YS, Chen CL, Zhang L, Wang R, Su F et al (2013) Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 45:180–185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV (1993) Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 13:7358–7363

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM (1995) Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 270:21176–21180

    Article  PubMed  CAS  Google Scholar 

  • Sapi Z, Fule T, Hajdu M, Matolcsy A, Moskovszky L, Mark A, Sebestyen A, Bodoky G (2011) The activated targets of mTOR signaling pathway are characteristic for PDGFRA mutant and wild-type rather than KIT mutant GISTs. Diagn Mol Pathol 20:22–33

    Article  PubMed  CAS  Google Scholar 

  • Schuetze SM, Zhao L, Chugh R, Thomas DG, Lucas DR, Metko G, Zalupski MM, Baker LH (2012) Results of a phase II study of sirolimus and cyclophosphamide in patients with advanced sarcoma. Eur J Cancer 48:1347–1353

    Article  PubMed  CAS  Google Scholar 

  • Schwartz GK, Tap WD, Qin LX, Livingston MB, Undevia SD, Chmielowski B, Agulnik M, Schuetze SM, Reed DR, Okuno SH et al (2013) Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: a multicentre, open-label, phase 2 trial. Lancet Oncol 14:371–382

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Setsu N, Yamamoto H, Kohashi K, Endo M, Matsuda S, Yokoyama R, Nishiyama K, Iwamoto Y, Dobashi Y, Oda Y (2012) The Akt/mammalian target of rapamycin pathway is activated and associated with adverse prognosis in soft tissue leiomyosarcomas. Cancer 118:1637–1648

    Article  PubMed  CAS  Google Scholar 

  • Setsu N, Kohashi K, Fushimi F, Endo M, Yamamoto H, Takahashi Y, Yamada Y, Ishii T, Yokoyama K, Iwamoto Y et al (2013) Prognostic impact of the activation status of the Akt/mTOR pathway in synovial sarcoma. Cancer 119:3504–3513

    PubMed  CAS  Google Scholar 

  • Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J, Hershey JW, Blenis J, Pende M, Sonenberg N (2006) The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 25:2781–2791

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sodhi A, Chaisuparat R, Hu J, Ramsdell AK, Manning BD, Sausville EA, Sawai ET, Molinolo A, Gutkind JS, Montaner S (2006) The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell 10:133–143

    Article  PubMed  CAS  Google Scholar 

  • Spira AI, Ettinger DS (2002) The use of chemotherapy in soft-tissue sarcomas. Oncologist 7:348–359

    Article  PubMed  CAS  Google Scholar 

  • Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G, Ranieri E, Gesualdo L, Schena FP, Grandaliano G (2005) Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 352:1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Thornton KA, Chen AR, Trucco MM, Shah P, Wilky BA, Gul N, Carrera-Haro MA, Ferreira MF, Shafique U, Powell JD et al (2013) A dose-finding study of temsirolimus and ­liposomal ­doxorubicin for patients with recurrent and refractory bone and soft tissue sarcoma. Int J ­Cancer 133:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Tuhackova Z, Sovova V, Sloncova E, Proud CG (1999) Rapamycin-resistant phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in v-SRC-transformed hamster fibroblasts. Int J Cancer 81:963–969

    Article  PubMed  CAS  Google Scholar 

  • van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, Schoffski P, Aglietta M, Staddon AP, Beppu Y et al (2012) Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379:1879–1886

    Article  PubMed  CAS  Google Scholar 

  • Verschraegen CF, Movva S, Ji Y, Schmit B, Quinn RH, Liem B, Bocklage T, Shaheen M (2013) A phase I study of the combination of temsirolimus with irinotecan for metastatic sarcoma. Cancers 5:418–429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vojtechova M, Tureckova J, Kucerova D, Sloncova E, Vachtenheim J, Tuhackova Z (2008) Regulation of mTORC1 signaling by Src kinase activity is Akt1-independent in RSV-transformed cells. Neoplasia 10:99–107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wagner AJ, Malinowska-Kolodziej I, Morgan JA, Qin W, Fletcher CD, Vena N, Ligon AH, Antonescu CR, Ramaiya NH, Demetri GD et al (2010) Clinical activity of mTOR inhibition with sirolimus in malignant perivascular epithelioid cell tumors: targeting the pathogenic activation of mTORC1 in tumors. J Clin Oncol 28:835–840

    Article  PubMed  CAS  Google Scholar 

  • Wan X, Mendoza A, Khanna C, Helman LJ (2005) Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 65:2406–2411

    Article  PubMed  CAS  Google Scholar 

  • Wan X, Shen N, Mendoza A, Khanna C, Helman LJ (2006) CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia 8:394–401

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940

    Article  PubMed  CAS  Google Scholar 

  • Wimbauer F, Yang C, Shogren KL, Zhang M, Goyal R, Riester SM, Yaszemski MJ, Maran A (2012) Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells. BMC Cancer 12:93

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Y, Ikezoe T, Nishioka C, Taguchi T, Zhu WG, Koeffler HP, Taguchi H (2006) ZD6474 induces growth arrest and apoptosis of GIST-T1 cells, which is enhanced by concomitant use of sunitinib. Cancer Sci 97:1404–1409

    Article  PubMed  CAS  Google Scholar 

  • Yoo C, Lee J, Rha SY, Park KH, Kim TM, Kim YJ, Lee HJ, Lee KH, Ahn JH (2013) Multicenter phase II study of everolimus in patients with metastatic or recurrent bone and soft-tissue sarcomas after failure of anthracycline and ifosfamide. Invest New Drugs 31:1602–1608

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Parsyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parsyan, A., Chen, J., Pollock, R., Meterissian, S. (2014). Sarcomas. In: Parsyan, A. (eds) Translation and Its Regulation in Cancer Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9078-9_22

Download citation

Publish with us

Policies and ethics