Skip to main content

Super Resolution

  • Chapter
  • First Online:
  • 2086 Accesses

Abstract

We introduced, in this chapter, what the definition of a super resolution is and what the key approaching methods for major super resolution algorithms are. Numerous super resolution algorithms have based on the observation model and they have followed the warp-blur sequence. But, some cases which have large movements and warp factors such as video by taking in a vehicle are worse than normal interpolation methods. We introduce the smart and robust registration algorithm with rotation and shift estimation. To reduce the registration error, this algorithm decides the optimal reference image even other super resolution algorithms discard this registration error. This algorithm follows the warp-blur observation model because the blurring parameter is much bigger than warp parameter for camera rotation and/or vibration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. International Organization for Standardization, ISO 12233:2000 - Photography- Electronic still picture cameras - Resolution measurements (2000)

    Google Scholar 

  2. T. Komatsu, K. Aizawa, T. Igarashi, T. Saito, Signal-processing based method for acquiring very high resolution image with multiple cameras and its theoretical analysis, in Proceedings of the Institute of Electrical Engineering, vol. 140, no. 1, pt. I (1993), pp. 19–25

    Google Scholar 

  3. S. Borman, R.L. Stevenson, Spatial resolution enhancement of low-resolution image sequences-a comprehensive review with directions for future research. Technical Report, Laboratory for Image and Signal Analysis (LISA). University of Notre Dame, Notre Dame, Ind (1998). Available at http://www.nd.edu/∼sborman/publications/

  4. S. Borman, R.L. Stevenson, Super-resolution from image sequences-a review, in Proceedings of 1998 Midwest Symposium Circuits and Systems (1999), pp. 374–378

    Google Scholar 

  5. S. Chaudhuri (ed.), Super-Resolution Imaging (Kluwer, Norwell, 2001)

    Google Scholar 

  6. H. Ur, D. Gross, Improved resolution from sub-pixel shifted pictures. CVGIP: Graph. Models Image Process. 54, 181–186 (1992)

    Google Scholar 

  7. T. Komatsu, T. Igarashi, K. Aizawa, T. Saito, Very high resolution imaging scheme with multiple different-aperture cameras. Signal Process. Image Commun. 5, 511–526 (1993)

    Article  Google Scholar 

  8. M.S. Alam, J.G. Bognar, R.C. Hardie, B.J. Yasuda, Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames. IEEE Trans. Instrum. Meas. 49, 915–923 (2000)

    Article  Google Scholar 

  9. N.R. Shah, A. Zakhor, Resolution enhancement of color video sequences. IEEE Trans. Image Process. 8, 879–885 (1999)

    Article  Google Scholar 

  10. N. Nguyen, P. Milanfar, An efficient wavelet-based algorithm for image superresolution. Proc. Int. Conf. Image Process. 2, 351–354 (2000)

    Google Scholar 

  11. R.Y. Tsai, T.S. Huang, Multipleframe image restoration and registration, in Advances in Computer Vision and Image Processing (JAI Press Inc., Greenwich, 1984), pp. 317–339

    Google Scholar 

  12. S.P. Kim, N.K. Bose, H.M. Valenzuela, Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans. Acoust. Speech Sig. Process. 38, 1013–1027 (1990)

    Article  Google Scholar 

  13. S.P. Kim, W.Y. Su, Recursive high-resolution reconstruction of blurred multiframe images. IEEE Trans. Image Process. 2, 534–539 (1993)

    Article  Google Scholar 

  14. N.K. Bose, H.C. Kim, H.M. Valenzuela, Recursive implementation of total least squares algorithm for image reconstruction from noisy, undersampled multiframes, in Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, vol. 5 (Minneapolis, 1993), pp. 269–272

    Google Scholar 

  15. S.H. Rhee, M.G. Kang, Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt. Eng. 38(8), 1348–1356 (1999)

    Article  Google Scholar 

  16. M.C. Hong, M.G. Kang, A.K. Katsaggelos, A regularized multichannel restoration approach for globally optimal high resolution video sequence. in SPIE VCIP, vol. 3024 (San Jose, 1997), pp. 1306–1317

    Google Scholar 

  17. M.C. Hong, M.G. Kang, A.K. Katsaggelos, An iterative weighted regularized algorithm for improving the resolution of video sequences, in Proceedings of the International Conference on Image Processing, vol. 2 (1997), pp. 474-477

    Google Scholar 

  18. M.G. Kang, Generalized multichannel image deconvolution approach and its applications. Opt. Eng. 37(11), 2953–2964 (1998)

    Article  Google Scholar 

  19. R.C. Hardie, K.J. Barnard, J.G. Bognar, E.E. Armstrong, E.A. Watson, High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Opt. Eng. 37(1), 247–260 (1998)

    Article  Google Scholar 

  20. N.K. Bose, S. Lertrattanapanich, J. Koo, Advances in superresolution using L-curve, in Proceedings of the International Symposium on Circuits and Systems, vol. 2 (2001), pp. 433–436

    Google Scholar 

  21. B.C. Tom, A.K. Katsaggelos, Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images, in Proceedings of 1995 IEEE International Conference on Image Processing, vol. 2, Washington (1995), pp. 539–542

    Google Scholar 

  22. R.R. Schulz, R.L. Stevenson, Extraction of high-resolution frames from video sequences. IEEE Trans. Image Process. 5, 996–1011 (1996)

    Article  Google Scholar 

  23. R.C. Hardie, K.J. Barnard, E.E. Armstrong, Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans. Image Process. 6, 1621–1633 (1997)

    Article  Google Scholar 

  24. P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, R. Hanson, Super-resolved surface reconstruction from multiple images. NASA Ames Research Center, Moffett Field, Technical Report FIA-94-12 (1994)

    Google Scholar 

  25. H. Stark, P. Oskoui, High resolution image recovery from image-plane arrays, using convex projections. J. Opt. Soc. Am. A 6, 1715–1726 (1989)

    Article  Google Scholar 

  26. A.M. Tekalp, M.K. Ozkan, M.I. Sezan, High-resolution image reconstruction from lower-resolution image sequences and space varying image restoration, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 3 (San Francisco, 1992), pp. 169–172

    Google Scholar 

  27. A.J. Patti, M.I. Sezan, A.M. Tekalp, Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Process. 6(8), 1064–1076 (1997)

    Article  Google Scholar 

  28. P.E. Eren, M.I. Sezan, A.M. Tekalp, Robust, object-based high-resolution image reconstruction from low-resolution video. IEEE Trans. Image Process. 6(10), 1446–1451 (1997)

    Article  Google Scholar 

  29. A.J. Patti, Y. Altunbasak, Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image Process. 10(1), 179–186 (2001)

    Article  Google Scholar 

  30. B.C. Tom, A.K. Katsaggelos, An iterative algorithm for improving the resolution of video sequences, in Proceedings of the 1996 SPIE Conference on Visual Communications and Image Processing (Orlando, 1996), pp. 1430–1438

    Google Scholar 

  31. M. Elad, A. Feuer, Restoration of a single super-resolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process. 6(12), 1646–1658 (1997)

    Article  Google Scholar 

  32. M. Irani, S. Peleg, Improving resolution by image registration. CVGIP: Graph. Models Image Process. 53, 231–239 (1991)

    Google Scholar 

  33. S. Mann, R.W. Picard, Virtual bellows: constructing high quality stills from video, in Proceedings of the IEEE International Conference on Image Processing (Austin, 1994), pp. 13–16

    Google Scholar 

  34. M. Irani, S. Peleg, Motion analysis for image enhancement resolution, occlusion, and transparency. J. Visual Commun. Image Represent. 4, 324–335 (1993)

    Article  Google Scholar 

  35. M. Elad, A. Feuer, Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Trans. Image Process. 8, 387–395 (1999)

    Article  Google Scholar 

  36. M. Elad, A. Feuer, Super-resolution reconstruction of image sequences. IEEE Trans. Pattern Anal. Mach. Intelli. 21(9), 817–834 (1999)

    Article  Google Scholar 

  37. M.C. Chiang, T.E. Boult, Efficient super-resolution via image warping. Image Vis. Comput. 18, 761–771 (2000)

    Article  Google Scholar 

  38. D. Rajan, S. Chaudhuri, Generation of super-resolution images form blurred observations using an MRF model. J. Math. Imaging Vision 16, 5–15 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. D. Rajan, S. Chaudhuri, Simultaneous estimation of super-resolved intensity and depth maps from low resolution defocused observations of ascene, in Proceedings of the IEEE International Conference on Computer Vision (Vancouver, 2001), pp. 113–118

    Google Scholar 

  40. D. Rajan, S. Chaudhuri, Generalized interpolation and its applications in super-resolution imaging. Image Vis. Comput. 19, 957–969 (2001)

    Article  Google Scholar 

  41. M.V. Joshi, S. Chaudhuri, Super-resolution imaging: use of zoom as a cue, in Proceedings of the Indian Conference on Vision, Graphics and Image Processing (Ahmedabad, 2002), pp. 439–444

    Google Scholar 

  42. N.K. Bose, H.C. Kim, B. Zhou, Performance analysis of the TLS algorithm for image reconstruction from a sequence of undersampled noisy and blurred frames, in Proceedings of the ICIP-94, IEEE International Conference on Image Processing, vol. 3 (1994), pp. 571–575

    Google Scholar 

  43. M. Ng, J. Koo, N. Bose, Constrained total least squares computations for high resolution image reconstruction with multisensors. Int. J. Imaging Syst. Technol. 12, 35–42 (2002)

    Article  Google Scholar 

  44. M.K. Ng, N.K. Bose, Analysis of displacement errors in high-resolution image reconstruction with multisensors. IEEE Trans. Circuits Syst. I 49, 806–813 (2002)

    Article  Google Scholar 

  45. M. Park, E. Lee, J. Park, M.G. Kang, J. Kim, DCT-based high-resolution image reconstruction considering the inaccurate sub-pixel motion information. SPIE Opt. Eng. 41(2), 370–380 (2002)

    Article  Google Scholar 

  46. W. Lim, M. Park, M.G. Kang, Spatially adaptive regularized iterative high resolution image reconstruction algorithm, in Proceedings of the VCIP2001, Photonicswest (San Jose, 2001), pp. 20–26

    Google Scholar 

  47. E.S. Lee, M.G. Kang, Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration. IEEE Trans. Image Process. 12, 826–837 (2003)

    Google Scholar 

  48. Wirawan, P. Duhamel, H. Maitre, Multi-channel high resolution blind image restoration, in Proceedings of the IEEE ICASSP (AZ, 1989), pp. 3229–3232

    Google Scholar 

  49. N. Nguyen, P. Milanfar, G. Golub, Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Trans. Image Process. 10, 1299–1308 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. N. Nguyen, P. Milanfar, G. Golub, A computationally efficient superresolution image reconstruction algorithm. IEEE Trans. Image Process. 10, 573–583 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  51. M. Elad, Y. Hel-Or, A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans. Image Process. 10(8), 1187–1193 (2001)

    Article  MATH  Google Scholar 

  52. M. Ng, R. Chan, T. Chan, A. Yip, Cosine transform preconditioners for high resolution image reconstruction. Linear Algebra Appl. 316, 89–104 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  53. D.S. Messing, M.I. Sezan, Improved multi-image resolution enhancement for colour images captured by single-CCD cameras, in Proceedings of the International Conference on Image Processing, vol. 3 (2000), pp. 484–487

    Google Scholar 

  54. M.K. Ng, An efficient parallel algorithm for high resolution color image reconstruction, in Proceedings of the 7th International Conference on Parallel and Distributed Systems: Workshops (2000), pp. 547–552

    Google Scholar 

  55. B.C. Tom, A.K. Katsaggelos, Resolution enhancement of monochrome and color video using motion compensation. IEEE Trans. Image Process. 10(2), 278–287 (2001)

    Article  MATH  Google Scholar 

  56. M. Ng, W. Kwan, High-resolution color image reconstruction with Neumann boundary conditions. Ann. Oper. Res. 103, 99–113 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  57. D. Chen, R.R. Schultz, Extraction of high-resolution video stills from MPEG image sequences, in Proceedings of the 1998 IEEE International Conference on Image Processing, vol. 2 (1998), pp. 465–469

    Google Scholar 

  58. Y. Altunbasak, A.J. Patti, A maximum a posteriori estimator for high resolution video reconstruction from MPEG video, in Proceedings of the 2000 IEEE International Conference on Image Processing, vol. 2 (2000), pp. 649–652

    Google Scholar 

  59. B. Martins, S. Forchhammer, A unified approach to restoration, deinterlacing and resolution enhancement in decoding MPEG-2 video. IEEE Trans. Circuits Syst. Video Technol. 12(9), 803–811 (2002)

    Article  Google Scholar 

  60. C.A. Segall, R. Molina, A.K. Katsaggelos, J. Mateos, Reconstruction of high-resolution image frames from a sequence of low-resolution and compressed observations, in Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2 (2002), pp. 1701–1704

    Google Scholar 

  61. S.C. Park, M.G. Kang, C.A. Segall, A.K. Katsaggelos, Spatially adaptive high-resolution image reconstruction of low resolution DCT-based compressed images, in Proceedings of the 2002 IEEE International Conference Image Processing, vol. 2 (2002), pp. 861–864

    Google Scholar 

  62. B.K. Gunturk, Y. Altunbasak, R.M. Mersereau, Multiframe resolution-enhancement methods for compressed video. IEEE Signal Process. Lett. 9, 170–174 (2002)

    Article  Google Scholar 

  63. H.C. Andrews, B.R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, 1977)

    Google Scholar 

  64. A.K. Katsaggelos (ed.), Digital Image Restoration, vol. 23 (Springer, Heidelberg, 1991)

    Google Scholar 

  65. I.J. Schoenberg, Cardinal interpolation and spline functions. J. Approx. Theory. 2, 167–206 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  66. R.E. Crochiere, L.R. Rabiner, Interpolation and decimation of digital signals-a turorial review. Proc. IEEE 69(3), 300–331 (1981)

    Article  Google Scholar 

  67. M. Unser, A. Aldroubi, M. Eden, Enlargement or reduction of digital images with minimum loss of information. IEEE Trans. Image Process. 4(3), 247–258 (1995)

    Article  Google Scholar 

  68. Z. Wang, F. Qi, On ambiguities in super-resolution modeling. IEEE Signal Process. Lett. 11, 678–681 (2004)

    Article  Google Scholar 

  69. S. Farsiu, D. Robinson, M. Elad, P. Milanfar, Robust shift and add approach to super-resolution, in Proceedings of SPIE Applications of Digital Image Processing XXVI, vol. 5203 (San Diego, 2003), pp. 121–130

    Google Scholar 

  70. S. Farsiu, D. Robinson, M. Elad, P. Milanfar, Fast and robust multiframe super-resolution. IEEE Trans. Image Process. 13, 1327–1344 (2004)

    Article  Google Scholar 

  71. A. L´opez, R.Molina, A. K. Katsaggelos, A. Rodr´ıguez, J. M. L´opez, J. M. Llamas, Parameter estimation in Bayesian reconstruction of SPECT images: an aide in nuclear medicine diagnosis. Int. J. Imaging Syst. Technol. 14, 21–27 (2004)

    Google Scholar 

  72. S. Lertrattanapanich, N.K. Bose, High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Trans. Image Process. 11, 1427–1441 (2002)

    Article  MathSciNet  Google Scholar 

  73. S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: a technical overview. IEEE Sig. Process. Mag. 20(3), 21–36 (2003)

    Google Scholar 

  74. B. Zitová, J. Flusser, Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  75. A.M. Tekalp, Digital Video Processing (Prentice Hall, Englewood Cliffs, 1995)

    Google Scholar 

  76. B.S. Reddy, B.N. Chatterji, An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  77. B. Marcel, M. Briot, R. Murrieta, Calcul de translation et rotation par la transformation de Fourier. Traitement du Signal 14(2), 135–149 (1997)

    MATH  Google Scholar 

  78. S.P. Kim, W.-Y. Su, Subpixel accuracy image registration by spectrum cancellation, in Proceedings of IEEE International Conference Acoustics, Speech, Signal Processing (ICASSP ’93), vol. 5 (Minneapolis, 1993), pp. 153–156

    Google Scholar 

  79. H.S. Stone, M.T. Orchard, E.-C. Chang, S.A. Martucci, A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens. 39(10), 2235–2243 (2001)

    Article  Google Scholar 

  80. P. Vandewalle, S.E. S¨usstrunk, M. Vetterli, Super-resolution images reconstructed from aliased images, in Proceedings of SPIE/IS&T Visual Communications and Image Processing Conference, ed. by T. Ebrahimi, T. Sikora, vol. 5150 (Lugano, 2003), pp. 1398–1405

    Google Scholar 

  81. H. Foroosh, J.B. Zerubia, M. Berthod, Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 11(3), 188–200 (2002)

    Article  Google Scholar 

  82. L. Lucchese, G.M. Cortelazzo, A noise-robust frequency domain technique for estimating planar roto-translations. IEEE Trans. Sig. Process. 48(6), 1769–1786 (2000)

    Article  Google Scholar 

  83. D. Capel, A. Zisserman, Computer vision applied to super-resolution. IEEE Sig. Process. Mag. 20(3), 75–86 (2003)

    Article  Google Scholar 

  84. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24(6), 381–395

    Google Scholar 

  85. D. Keren, S. Peleg, R. Brada, Image sequence enhancement using sub-pixel displacements, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 88), (Ann Arbor, 1988), pp. 742–746

    Google Scholar 

  86. J.R. Bergen, P. Anandan, K.J. Hanna, R. Hingorani, Hierarchical model-based motion estimation, in Proceedings of 2nd European Conference on Computer Vision (ECCV’92), Lecture Notes in Computer Science (Santa Margherita Ligure, 1992), pp. 237–252

    Google Scholar 

  87. M. Irani, B. Rousso, S. Peleg, Computing occluding and transparent motions. Int. J. Comput. Vis. 12(1), 5–16 (1994)

    Article  Google Scholar 

  88. J. Gluckman, Gradient field distributions for the registration of images, in Proceedings of IEEE International Conference on Image Processing (ICIP ’03), vol. 3 (Barcelona, 2003), pp. 691–694

    Google Scholar 

  89. A. Papoulis, Generalized sampling expansion. IEEE Trans. Circuits Syst. 24(11), 652–654 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  90. R.R. Schultz, L. Meng, R.L. Stevenson, Subpixel motion estimation for super-resolution image sequence enhancement. J. Vis. Commun. Image Represent. 9(1), 38–50 (1998)

    Article  Google Scholar 

  91. A. Zomet, A. Rav-Acha, S. Peleg, Robust super-resolution, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’01), vol. 1, (Kauai, 2001), pp. 645–650

    Google Scholar 

  92. W. Li, E. Salari, Successive elimination algorithm for motion estimation. IEEE Trans. Image Process. 4(1), 105–107 (1995)

    Article  Google Scholar 

  93. X.Q. Gao, C.J. Duanmu, C.R. Zou, A multilevel successive elimination algorithm for block matching motion estimation. IEEE Trans. Image Process. 9(3), 501–505 (2000)

    Article  Google Scholar 

  94. M. Brűnig, W. Niehsen, Fast full search Block matching. IEEE Trans. Circuit Syst. Video Technol. 11(2), 241–247 (2001)

    Article  Google Scholar 

  95. H.G. Musmann, P. Pirsch, H.J. Grallert, Advanced in picture coding. Proc. IEEE 73(4), 523–548 (1995)

    Article  Google Scholar 

  96. S. Zhu, K. Ma, A new diamond search algorithm for fast block matching motion estimation. IEEE Trans. Image Process. 9, 287–290 (2000)

    Article  Google Scholar 

  97. ITU-T, Video coding for low bitrate communication, Draft Recommendation H.263 (1995)

    Google Scholar 

  98. Y.H. Jeong, J.H. Kim, The FASCO block matching algorithm based on motion vector prediction using spatio-temporal correlations. Korean Inst. Commun. Sci. 26(11A), 1925–1937 (2002)

    MathSciNet  Google Scholar 

  99. J.N. Kim, S.C. Byun, Y.H. Kim, B.H. Ahn, Fast full search motion estimation algorithm using early detection of impossible candidate vectors. IEEE Trans. Sig. Process. 50(9), 2355–2365 (2002)

    Article  MathSciNet  Google Scholar 

  100. V. Ayala Ramirez, M. Devy, C. Parra, Active tracking based on Hausdorff matching, in Proceedings of Pattern Recognition 15th International Conference, vol. 4 (2000), pp. 706–709

    Google Scholar 

  101. V. Velisavljevic, “Directionlets,” Ph.D. dissertation, Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland, 2005, ph.D. Thesis EPFL 3358 (2005), School of Computer and Communication Sciences

    Google Scholar 

  102. W.S. Hoge, A subspace identification extension to the phase correlation method. IEEE Trans. Med. Imaging 22(2), 277–280 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo-Moon Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cho, HM. (2014). Super Resolution. In: Kim, J., Shin, H. (eds) Algorithm & SoC Design for Automotive Vision Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9075-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9075-8_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9074-1

  • Online ISBN: 978-94-017-9075-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics