Automating the Parameter Selection in VRP: An Off-line Parameter Tuning Tool Comparison

Chapter

Abstract

Vehicle route optimization is an important application of combinatorial optimization. Therefore, a variety of methods has been proposed to solve different challenging vehicle routing problems. An important step in adopting these methods to solve real-life problems is to find appropriate parameters for the routing algorithms. In this chapter, we show how this task can be automated using parameter tuning by presenting a set of comparative experiments on seven state-of-the-art tuning methods. We analyze the suitability of these methods in configuring routing algorithms, and give the first critical comparison of automated parameter tuners in vehicle routing. Our experimental results show that the tuning methods are able to effectively automate the task of parameter configuration of route optimization systems. Moreover, our comparison shows that while routing algorithms clearly benefit from parameter tuning, and while there is no single tuner which consistently outperforms others, the tuning performance can be clearly improved with careful choice of a tuning method.

References

  1. 1.
    Ansótegui C, Sellmann M, Tierney K (2009) A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent IP (ed) CP’09 Proceedings of the 15th international conference on principles and practice of constraint programming. Lecture notes in computer science, vol 5732. Springer, Berlin, pp 142–157Google Scholar
  2. 2.
    Balaprakash P, Birattari M, Stützle T (2007) Improvement strategies for the F-Race algorithm: sampling design and iterative refinement. IRIDIA—technical report series TR/IRIDIA/2007-011, Université Libre de BruxellesGoogle Scholar
  3. 3.
    Baldacci R, Bartolini E, Mingozzi A, Roberti R (2010) An exact solution framework for a broad class of vehicle routing problems. Comput Manag Sci 7(3):229–268CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bartz-Beielstein T, Lasarczyk C, Preuß M (2005) Sequential parameter optimization. In: The 2005 IEEE congress on evolutionary computation, vol 1. IEEE Press, pp 773–780Google Scholar
  5. 5.
    Battiti R, Brunato M (2010) Reactive search optimization: learning while optimizing. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics, 2nd edn. Springer, Berlin, pp 543–571Google Scholar
  6. 6.
    Becker S, Gottlieb J, Stützle T (2006) Applications of racing algorithms: an industrial perspective. In: EA’05 proceedings of the 7th international conference on artificial evolution. Lecture notes in computer science, vol 3871. Springer, Berlin, pp 271–283Google Scholar
  7. 7.
    Bianchi L, Birattari M, Chiarandini M, Manfrin M, Mastrolilli M, Paquete L, Rossi-Doria O, Schiavinotto T (2006) Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J Math Model Algorithms 5(1):91–110CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: GECCO 2002 proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, CA, pp 11–18Google Scholar
  9. 9.
    Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-Race and iterated F-Race: an overview. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin, pp 311–336Google Scholar
  10. 10.
    Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. In: Christofides N, Mingozzi A, Toth P, Sandi C (eds) Combinatorial optimization. Wiley, Chichester, pp 315–338Google Scholar
  11. 11.
    Coy SP, Golden BL, Runger GC, Wasil EA (2001) Using experimental design to find effective parameter settings for heuristics. J Heuristics 7(1):77–97CrossRefMATHGoogle Scholar
  12. 12.
    Dantzig GB, Ramser JH (1959/1960) The truck dispatching problem. Manage Sci 6:80–91CrossRefMathSciNetGoogle Scholar
  13. 13.
    Drexl M (2011) Rich vehicle routing in theory and practice. Technical report LM-2011-04, Johannes Gutenberg University, MainzGoogle Scholar
  14. 14.
    Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evolut Comput 3(2):124–141CrossRefGoogle Scholar
  15. 15.
    Garrido P, Castro C, Monfroy E (2009) Towards a flexible and adaptable hyperheuristic approach for VRPs. In: Arabnia HR, de la Fuente D, Olivas JA (eds.) Proceedings of the 2009 international conference on artificial intelligence (ICAI 2009). CSREA Press, pp 311–317Google Scholar
  16. 16.
    Gendreau M, Laporte G, Séguin R (1996) Stochastic vehicle routing. Europ J Oper Res 88(1):3–12CrossRefMATHGoogle Scholar
  17. 17.
    Groër C, Golden B, Wasil E (2010) A library of local search heuristics for the vehicle routing problem. Math Program Comput 2(2):79–101CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Hansen N (2006) The CMA evolution strategy: a comparing review. In: Lozano JA, Larrañaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation: advances on estimation of distribution algorithms. Springer, Berlin, pp 75–102Google Scholar
  19. 19.
    Hepdogan S, Moraga R, DePuy G, Whitehouse G (2007) Nonparametric comparison of two dynamic parameter setting methods in a meta-heuristic approach. J Syst Cybern Inform 5(5):46–52Google Scholar
  20. 20.
    Hutter F, Hoos HH, Leyton-Brown K (2010) Automated configuration of mixed integer programming solvers. In: Lodi A, Milano M, Toth P (eds) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. Lecture notes in computer science, vol 6140. Springer, Berlin, pp 186–202Google Scholar
  21. 21.
    Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello-Coello CA (ed) Learning and intelligent optimization: 5th international conference (LION 5, Rome, 2011). Lecture notes in computer science, vol 6683. Springer, Berlin, pp 507–523Google Scholar
  22. 22.
    Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009) ParamILS: an automatic algorithm configuration framework. J Artif Intell Res (JAIR) 36:267–306MATHGoogle Scholar
  23. 23.
    Kadioglu S, Malitsky Y, Sellmann M, Tierney K (2010) ISAC— instance-specific algorithm configuration. In: Coelho H, Studer R, Wooldridge M (eds) ECAI 2010–19th European conference on artificial intelligence. IOS Press, Amsterdam, pp 751–756Google Scholar
  24. 24.
    Laporte G (2007) What you should know about the vehicle routing problem. Naval Res Logist 54(8):811–819CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package: iterated racing for automatic algorithm configuration. IRIDIA—technical report series TR/IRIDIA/2011-004, Université Libre de BruxellesGoogle Scholar
  26. 26.
    Miki M, Hiroyasu T, Jitta T (2003) Adaptive simulated annealing for maximum temperature. In: 2003 IEEE international conference on systems, man and cybernetics. IEEE, vol 1, pp 20–25Google Scholar
  27. 27.
    Montero E, Riff MC, Neveu B (2010) An evaluation of off-line calibration techniques for evolutionary algorithms. In: GECCO’10 proceedings of the 12th annual conference on genetic and evolutionary computation. ACM, New York, pp 299–300Google Scholar
  28. 28.
    Montero E, Riff MC, Neveu B (2010) New requirements for off-line parameter calibration algorithms. In: 2010 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8Google Scholar
  29. 29.
    Nannen V, Eiben AE (2007) Efficient relevance estimation and value calibration of evolutionary algorithm parameters. In: CEC 2007 IEEE congress on evolutionary computation. IEEE, pp 103–110Google Scholar
  30. 30.
    Pellegrini P (2005) Application of two nearest neighbor approaches to a rich vehicle routing problem. In: IRIDIA—technical report series TR/IRIDIA/2005-015, Université Libre de BruxellesGoogle Scholar
  31. 31.
    Pellegrini P, Birattari M (2006) The relevance of tuning the parameters of metaheuristics. A case study: the vehicle routing problem with stochastic demand. IRIDIA—technical report series TR/IRIDIA/2006-008, Université Libre de BruxellesGoogle Scholar
  32. 32.
    Smit SK, Eiben AE (2009) Comparing parameter tuning methods for evolutionary algorithms. In: CEC ’09 IEEE congress on evolutionary computation. IEEE, pp 399–406Google Scholar
  33. 33.
    Toth P, Vigo D (eds) (2002) The vehicle routing problem. SIAM, Philadelphia, PAMATHGoogle Scholar
  34. 34.
    Vidal T, Crainic TG, Gendreau M, Lahrichi N, Rei W (2012) A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Oper Res 60(3):611–624CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Yuan Z, Montes de Oca, MA, Birattari M, Stützle T (2010) Modern continuous optimization algorithms for tuning real and integer algorithm parameters. In: Swarm intelligence: proceedings of the 7th international conference. ANTS 2010. Lecture notes in computer science, vol 6234. Springer, Berlin, pp 203–214Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jussi Rasku
    • 1
  • Nysret Musliu
    • 2
  • Tommi Kärkkäinen
    • 1
  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland
  2. 2.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations