RXRs: Collegial Partners

  • Federica Gilardi
  • Béatrice DesvergneEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 70)


Retinoid X Receptors (RXR) were initially identified as nuclear receptors binding with stereo-selectivity the vitamin A derivative 9-cis retinoic acid, although the relevance of this molecule as endogenous activator of RXRs is still elusive. Importantly, within the nuclear receptor superfamily, RXRs occupy a peculiar place, as they are obligatory partners for a number of other nuclear receptors, thus integrating the corresponding signaling pathways. In this chapter, we describe the structural features allowing RXR to form homo- and heterodimers, and the functional consequences of this unique ability. Furthermore, we discuss the importance of studying RXR activity at a genome-wide level in order to comprehensively address the biological implications of their action that is fundamental to understand to what extent RXRs could be exploited as new therapeutic targets.


Nuclear Receptor Constitutive Androstane Receptor Heterodimerization Partner Nuclear Receptor Binding Chicken Ovalbumin Upstream Promoter Transcription 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Retinoid X receptor


Nuclear receptor


DNA-binding domain


Ligand binding domain


Nuclear receptor corepressor 1


Silencing mediator of Retinoid acid and Thyroid hormone receptor


Retinoic acid


Estrogen receptor


Retinoid acid receptor


Thyroid hormone receptor


Vitamin D receptors


Electrophoretic mobility shift assay


Chicken ovalbumin upstream promoter transcription factors


Peroxisome proliferator-activated receptor


Farnesoid X receptor


Liver X receptor


Nerve growth factor-induced protein I-B


Nuclear receptor related 1


Androgen receptor


Mineralcorticoid receptor


Glucocorticoid receptor


Pregnane X receptor


Constitutive androstane receptor


Hepatocyte nuclear factor 4


Small heterodimer partner


Direct repeat


Cryo electron microscopy


Nuclear magnetic resonance


Small angle X-ray


Small single neutron scattering


Fluorescence resonance energy transfer


Hydrogen/Deuterium exchange mass spectrometry


Chromatin immunoprecipitation


Steroid receptor coactivator 1


Transcriptional intermediary factor 2


Activating function 2


Mitogen-activated kinase


Protein kinase C


Fatty acid binding protein 4


Bile salt export pump 1


Everted repeat


Inverted repeat


3-Hydroxy-3-Methylglutaryl-CoA synthase 2


Docohexanoic acid


Polyunsaturated fatty acids


Trybutyltin chloride


Transcription start site




Selective nuclear receptor modulator


  1. 1.
    Adachi S, Okuno M, Matsushima-Nishiwaki R, Takano Y, Kojima S, Friedman SL, Moriwaki H, Okano Y (2002) Phosphorylation of retinoid X receptor suppresses its ubiquitination in human hepatocellular carcinoma. Hepatology 35:332–340PubMedGoogle Scholar
  2. 2.
    Ahuja HS, Liu S, Crombie DL, Boehm M, Leibowitz MD, Heyman RA, Depre C, Nagy L, Tontonoz P, Davies PJA (2001) Differential effects of Rexinoids and Thiazolidinediones on metabolic gene expression in diabetic rodents. Mol Pharmacol 59:765–773Google Scholar
  3. 3.
    Altucci L, Rossin A, Hirsch O, Nebbioso A, Vitoux D, Wilhelm E, Guidez F, De Simone M, Schiavone EM, Grimwade D, Zelent A, De The H, Gronemeyer H (2005) Rexinoid-triggered differentiation and tumor-selective apoptosis of acute myeloid leukemia by protein kinase A-mediated desubordination of retinoid X receptor. Cancer Res 65:8754–8765PubMedGoogle Scholar
  4. 4.
    Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304PubMedGoogle Scholar
  5. 5.
    Bardot O, Aldridge TC, Latruffe N, Green S (1993) PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene. Biochem Biophys Res Commun 192:37–45PubMedGoogle Scholar
  6. 6.
    Berrodin TJ, Marks MS, Ozato K, Linney E, Lazar MA (1992) Heterodimerization among thyroid hormone receptor, retinoid X receptor, Chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein. Mol Endocrinol 6:1468–1478PubMedGoogle Scholar
  7. 7.
    Blumenschein GR, Khuri FR, Von Pawel J, Gatzemeier U, Miller WH, Jotte RM, Le Treut J, Sun S-L, Zhang JK, Dziewanowska ZE, Negro-Vilar A (2008) Phase III trial comparing carboplatin, paclitaxel, and bexarotene with carboplatin and paclitaxel in chemotherapy-naive patients with advanced or metastatic non-small-cell lung cancer: SPIRIT II. J Clin Oncol 26:1879–1885PubMedGoogle Scholar
  8. 8.
    Boehm MF, Zhang L, Zhi L, Mcclurg MR, Berger E, Wagoner M, Mais DE, Suto CM, Davies PJA, Heyman RA, Nadzan AM (1995) Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells. J Med Chem 38:3146–3155PubMedGoogle Scholar
  9. 9.
    Boergesen M, Pedersen TA, Gross B, Van Heeringen SJ, Hagenbeek D, Bindesboll C, Caron S, Lalloyer F, Steffensen KR, Nebb HI, Gustafsson J-A, Stunnenberg HG, Staels B, Mandrup S (2012) Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites. Mol Cell Biol 32:852–867PubMedCentralPubMedGoogle Scholar
  10. 10.
    Bookout AL, Jeong Y, Downes M, Yu R, Evans RM, Mangelsdorf DJ (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789–799PubMedGoogle Scholar
  11. 11.
    Boudjelal M, Wang Z, Voorhees JJ, Fisher GJ (2000) Ubiquitin/Proteasome pathway regulates levels of retinoic acid receptor Œ ≥ and retinoid X receptor Œ ± in human keratinocytes. Cancer Res 60:2247–2252PubMedGoogle Scholar
  12. 12.
    Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the ligand binding domain of the human nuclear receptor RXR-alpha. Nature 375:377–382PubMedGoogle Scholar
  13. 13.
    Bourguet W, Vivat V, Wurtz J-M, Chambon P, Gronemeyer H, Moras D (2000) Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol Cell 5:289–298PubMedGoogle Scholar
  14. 14.
    Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322PubMedCentralPubMedGoogle Scholar
  15. 15.
    Brelivet Y, Rochel N, Moras D (2012) Structural analysis of nuclear receptors: from isolated domains to integral proteins. Mol Cell Endocrinol 348:466–473PubMedGoogle Scholar
  16. 16.
    Brocard J, Kastner P, Chambon P (1996) Two novel RXRalpha isoforms from mouse testis. Biochem Biophys Res Commun 229:211–218PubMedGoogle Scholar
  17. 17.
    Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG (1992) RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J 11:1409–1418PubMedCentralPubMedGoogle Scholar
  18. 18.
    Burnside J, Darling DS, Chin WW (1990) A nuclear factor that enhances binding of thyroid hormone receptors to thyroid hormone response elements. J Biol Chem 265:2500–2504PubMedGoogle Scholar
  19. 19.
    Burris TP, Busby SA, Griffin PR (2012) Targeting orphan nuclear receptors for treatment of metabolic diseases and autoimmunity. Chem Biol 19:51–59PubMedCentralPubMedGoogle Scholar
  20. 20.
    Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13:213–224PubMedCentralPubMedGoogle Scholar
  21. 21.
    Calleja C, Messaddeq N, Chapellier B, Yang H, Krezel W, Li M, Metzger D, Mascrez BND, Ohta K, Kagechika H, Endo Y, Mark M, Ghyselinck NB, Chambon P (2006) Genetic and pharmacological evidence that a retinoic acid cannot be the RXR-activating ligand in mouse epidermis keratinocytes. Genes Dev 20:1525–1538PubMedCentralPubMedGoogle Scholar
  22. 22.
    Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122:33–43PubMedGoogle Scholar
  23. 23.
    Casals-Casas C, Desvergne B (2011) Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 73:135–162PubMedGoogle Scholar
  24. 24.
    Castillo AI, Sanchez-Martinez R, Moreno JL, Martinez-Iglesias OA, Palacios D, Aranda A (2004) A permissive retinoid X receptor/thyroid hormone receptor heterodimer allows stimulation of prolactin gene transcription by thyroid hormone and 9-cis-retinoic acid. Mol Cell Biol 24:502–513PubMedCentralPubMedGoogle Scholar
  25. 25.
    Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Structure of the intact PPAR-γ-RXR-α nuclear receptor complex on DNA. Nature 456:350–356PubMedCentralPubMedGoogle Scholar
  26. 26.
    Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457PubMedGoogle Scholar
  27. 27.
    Chen Y, Wei LN, Muller JD (2005) Unraveling protein-protein interactions in living cells with fluorescence fluctuation brightness analysis. Biophys J 88:4366–4377PubMedCentralPubMedGoogle Scholar
  28. 28.
    Chen Z-P, Iyer J, Bourguet W, Held P, Mioskowski C, Lebeau L, Noy N, Chambon P, Gronemeyer H (1998) Ligand- and DNA-induced dissociation of RXR tetramers. J Mol Biol 275:55–65PubMedGoogle Scholar
  29. 29.
    Committee NRN (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97:161–163Google Scholar
  30. 30.
    Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism. Physiol Rev 86:465–514PubMedGoogle Scholar
  31. 31.
    Desvergne B (2007) RXR: from partnership to leadership in metabolic regulations. In: Gerald L (ed) Vitamins & hormones. Academic Press, New YorkGoogle Scholar
  32. 32.
    Duvic M, Martin AG, Kim Y et al (2001) PHase 2 and 3 clinical trial of oral bexarotene (targretin capsules) for the treatment of refractory or persistent early-stage cutaneous t-cell lymphoma. Archives of Dermatology 137:581–593Google Scholar
  33. 33.
    Egea PF, Mitschler A, Moras D (2002) Molecular recognition of agonist ligands by RXRs. Mol Endocrinol 16:987–997PubMedGoogle Scholar
  34. 34.
    Farsetti A, Desvergne B, Hallenbeck PL, Robbins J, Nikodem VM (1992) Characterization of the myelin basic protein thyroid hormone response element and its function in the context of native and heterologous promoter. J Biol Chem 1992(267):15784–15788Google Scholar
  35. 35.
    Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the croassroads of key cellular functions. Prog Lipid Res 45:120–159PubMedGoogle Scholar
  36. 36.
    Feige JRMN, Gelman L, Tudor C, Engelborghs Y, Wahli W, Desvergne B (2005) Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. J Biol Chem 280:17880–17890PubMedGoogle Scholar
  37. 37.
    Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, Mcmorris T, Lamph WW, Evans RM, Weinberger C (1995) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81:687–693PubMedGoogle Scholar
  38. 38.
    Gampe RT Jr, Montana VG, Lambert MH, Wisely GB, Milburn MV, Xu HE (2000) Structural basis for autorepression of retinoid X receptor by tetramer formation and the AF-2 helix. Genes Dev 14:2229–2241PubMedCentralPubMedGoogle Scholar
  39. 39.
    Gampe RT, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE (2000) Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555PubMedGoogle Scholar
  40. 40.
    Gearing KL, Gottlicher M, Teboul M, Widmark E, Gustafsson JA (1993) Interaction of the peroxisome proliferator-activated receptor and retinoid receptor. Proc Natl Acad Sci USA 90:1440–1444PubMedCentralPubMedGoogle Scholar
  41. 41.
    Germain P, Jaya I, Zechel C, Gronemeyer H (2002) Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415:187–192PubMedGoogle Scholar
  42. 42.
    Gianni M, Bauer A, Garattini E, Chambon P, Rochette-Egly C (2002) Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RAR[gamma] degradation and transactivation. EMBO J 21:3760–3769PubMedCentralPubMedGoogle Scholar
  43. 43.
    Gianni M, Tarrade A, Nigro EA, Garattini E, Rochette-Egly C (2003) The AF-1 and AF-2 domains of RARγ2 and RXRα cooperate for triggering the transactivation and the degradation of RARγ2/RXRα heterodimers. J Biol Chem 278:34458–34466PubMedGoogle Scholar
  44. 44.
    Glass CK (1994) Differential recognition of target genes by nuclear receptor monomers, dimers and heterodimers. Endocr Rev 15:391–407PubMedGoogle Scholar
  45. 45.
    Glass CK, Devary OV, Rosenfeld MG (1990) Multiple cell-type specific proteins differentially regulate target sequence recognition by the alpha retinoic acid receptor. Cell 63:729–738PubMedGoogle Scholar
  46. 46.
    Govindan MV, Devic M, Green S, Gronemeyer H, Chambon P (1985) Cloning of the human glucocorticoid receptor cDNA. Nucleic Acids Res 13:8293–8304PubMedCentralPubMedGoogle Scholar
  47. 47.
    Haffner CD, Lenhard JM, Miller AB, Mcdougald DL, Dwornik K, Ittoop OR, Gampe RT, Xu HE, Blanchard S, Montana VG, Consler TG, Bledsoe RK, Ayscue A, Croom D (2004) Structure-based design of potent retinoid X receptor alpha agonists. J Med Chem 47:2010–2029PubMedGoogle Scholar
  48. 48.
    Harmon MA, Boehm MF, Heyman RA, Mangelsdorf DJ (1995) Activation of mammalian retinoid X receptors by the insect growth regulator methoprene. Proc Natl Acad Sci 92:6157–6160PubMedCentralPubMedGoogle Scholar
  49. 49.
    Haugen BR, Jensen DR, Sharma V, Pulawa LK, Hays WR, Krezel W, Chambon P, Eckel RH (2004) Retinoid X receptor gamma-deficient mice have increased skeletal muscle lipoprotein lipase activity and less weight gain when fed a high-fat diet. Endocrinology 145:3679–3685PubMedGoogle Scholar
  50. 50.
    Heery DM, Kalkhoven E, Hoare S, Parker M (1997) A signature motif in transcriptional coactivators mediates binding to nuclear receptors. Nature 387:733–736PubMedGoogle Scholar
  51. 51.
    Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318:635–641PubMedGoogle Scholar
  52. 52.
    Horlein A, Naar A, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass C (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404PubMedGoogle Scholar
  53. 53.
    Ijpenberg A, Jeannin E, Wahli W, Desvergne B (1997) Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. J Biol Chem 272:20108–20117PubMedGoogle Scholar
  54. 54.
    Ijpenberg A, Tan NS, Gelman L, Kersten S, Seydoux J, Xu J, Metzger D, Canaple L, Chambon P, Wahli W, Desvergne B (2004) In vivo activation of PPAR target genes by RXR homodimers. EMBO J 23:2083–2091PubMedCentralPubMedGoogle Scholar
  55. 55.
    Imai T, Jiang M, Chambon P, Metzger D (2001) Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor α mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. PNAS 98:224–228PubMedCentralPubMedGoogle Scholar
  56. 56.
    Imai T, Jiang M, Kastner P, Chambon P, Metzger D (2001) Selective ablation of retinoid X receptor alpha in hepatocytes impairs their lifespan and regenerative capacity. Proc Natl Acad Sci 98:4581–4586PubMedCentralPubMedGoogle Scholar
  57. 57.
    Ishida S, Shigemoto-Mogami Y, Kagechika H, Shudo K, Ozawa S, Sawada J-I, Ohno Y, Inoue K (2003) Clinically potential subclasses of retinoid synergists revealed by gene expression profiling1. Mol Cancer Ther 2:49–58PubMedGoogle Scholar
  58. 58.
    Jacobs MN, Nolan GT, Hood SR (2005) Lignans, bacteriocides and organochlorine compound activate the human pregnane X receptor (PXR). Toxicol Appl Pharmacol 209:123–133PubMedGoogle Scholar
  59. 59.
    Jaye MC, Krawiec JA, Campobasso N, Smallwood A, Qiu C, Lu Q, Kerrigan JJ, De Los Frailes Alvaro M, Laffitte B, Liu W-S, Marino JP, Meyer CR, Nichols JA, Parks DJ, Perez P, Sarov-Blat L, Seepersaud SD, Steplewski KM, Thompson SK, Wang P, Watson MA, Webb CL, Haigh D, Caravella JA, Macphee CH, Willson TM, Collins JL (2005) Discovery of substituted maleimides as liver X receptor agonists and determination of a ligand-bound crystal structure. J Med Chem 48:5419–5422Google Scholar
  60. 60.
    Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J-I (2005) Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor Œ ≥/retinoid X receptor pathway. Mol Pharmacol 67:766–774PubMedGoogle Scholar
  61. 61.
    Kassam A, Miao B, Young PR, Mukherjee R (2003) Retinoid X receptor (RXR) agonist-induced antagonism of farnesoid X receptor (FXR) activity due to absence of coactivator recruitment and decreased DNA binding. J Biol Chem 278:10028–10032PubMedGoogle Scholar
  62. 62.
    Kastner P, Grondona JM, Mark M, Gansmuller A, Lemeur M, Decimo D, Vonesch J-L, Dolle P, Chambon P (1994) Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78:987–1003PubMedGoogle Scholar
  63. 63.
    Kastner P, Mark M, Leid M, Gansmuller A, Chin W, Grondona JM, Decimo D, Krezel W, Dierich A, Chambon P (1996) Abnormal spermatogenesis in RXR beta mutant mice. Genes Dev 10:80–92PubMedGoogle Scholar
  64. 64.
    Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA 90:2160–2164PubMedCentralPubMedGoogle Scholar
  65. 65.
    Kersten S, Dong D, Lee W-Y, Reczek PR, Noy N (1998) Auto-silencing by the retinoid X receptor. J Mol Biol 284:21–32PubMedGoogle Scholar
  66. 66.
    Kersten S, Kelleher D, Chambon P, Gronemeyer H, Noy N (1995) Retinoid X receptor alpha forms tetramers in solution. Proc Natl Acad Sci 92:8645–8649PubMedCentralPubMedGoogle Scholar
  67. 67.
    Kitareewan S, Burka LT, Tomer KB, Parker CE, Deterding LJ, Stevens RD, Forman BM, Mais DE, Heyman RA, Mcmorris T, Weinberger C (1996) Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR. Mol Biol Cell 7:1153–1166PubMedCentralPubMedGoogle Scholar
  68. 68.
    Kliewer SA, Lehmann JM, Willson TM (1999) Orphan nuclear receptors: shifting endocrinology into reverse. Science 284:757–760PubMedGoogle Scholar
  69. 69.
    Kliewer SA, Umesono K, Heyman RA, Mangelsdorf DJ, Dyck JA, Evans RM (1992) Retinoid X receptor-COUP-TF interactions modulate retinoic acid signalling. Proc Natl Acad Sci USA 89:1448–1452PubMedCentralPubMedGoogle Scholar
  70. 70.
    Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992) Retinoid X receptors interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355:446–449PubMedGoogle Scholar
  71. 71.
    Kliewer SA, Umesono K, Nonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774PubMedGoogle Scholar
  72. 72.
    Kopf E, Plassat J-L, Vivat V, De The H, Chambon P, Rochette-Egly C (2000) Dimerization with retinoid X receptors and phosphorylation modulate the retinoic acid-induced degradation of retinoic acid receptors alpha and gamma through the ubiquitin-proteasome pathway. J Biol Chem 275:33280–33288PubMedGoogle Scholar
  73. 73.
    Kurokawa R, Dirienzo J, Boehm M, Sugarman J, Gloss B, Rosenfeld MG, Heyman RA, Glass CK (1994) Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371:528–531PubMedGoogle Scholar
  74. 74.
    Kurokawa R, Söderström M, Hörlein A, Halachmi S, Brown M, Rosenfeld MG, Glass CK (1995) Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377:451–454PubMedGoogle Scholar
  75. 75.
    Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, Edwards PA (2000) Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 275:10638–10647PubMedGoogle Scholar
  76. 76.
    Lalloyer F, Pedersen TA, Gross B, Lestavel S, Yous S, Vallez E, Gustafsson J-A, Mandrup S, Fievet C, Staels B, Tailleux A (2009) Rexinoid bexarotene modulates triglyceride but not cholesterol metabolism via gene-specific permissivity of the RXR/LXR heterodimer in the liver. Arterioscler Thromb Vasc Biol 29:1488–1495PubMedCentralPubMedGoogle Scholar
  77. 77.
    Lap Shu AC, Richard AW (2009) Cross-talk between PPARs and the partners of RXR: a molecular perspective. PPAR ResGoogle Scholar
  78. 78.
    Lee JM, Lee YK, Mamrosh JL, Busby SA, Griffin PR, Pathak MC, Ortlund EA, Moore DD (2011) A nuclear receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature 474:506–510PubMedCentralPubMedGoogle Scholar
  79. 79.
    Lefebvre B, Benomar Y, Guedin A, Langlois A, Hennuyer N, Dumont J, Bouchaert E, Dacquet C, Nicaud L, Casteilla L, Pattou F, Ktorza A, Staels B, Lefebvre P (2010) Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPAR gamma in obese mice and humans. J Clin Investig 120:1454–1468PubMedCentralPubMedGoogle Scholar
  80. 80.
    Lefebvre P, Benomar Y, Staels B (2010) Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab: TEM 21:676–683PubMedGoogle Scholar
  81. 81.
    Leibowitz MD, Ardecky RJ, Boehm MF, Broderick CL, Carfagna MA, Crombie DL, D’Äôarrigo J, Etgen GJ, Faul MM, Grese TA, Havel H, Hein NI, Heyman RA, Jolley D, Klausing K, Liu S, Mais DE, Mapes CM, Marschke KB, Michellys P-Y, Montrose-Rafizadeh C, Ogilvie KM, Pascual B, Rungta D, Tyhonas JS, Urcan MS, Wardlow M, Yumibe N, Reifel-Miller A (2006) Biological characterization of a heterodimer-selective retinoid X receptor modulator: potential benefits for the treatment of type 2 diabetes. Endocrinology 147:1044–1053Google Scholar
  82. 82.
    Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen JY, Staub A, Garnier JM, Mader S, Chambon P (1992) Purification, cloning and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68:377–395PubMedGoogle Scholar
  83. 83.
    Lemotte PK, Keidel S, Apfel CM (1996) Phytanic acid is a retinoid X receptor ligand. Eur J Biochem 236:328–333PubMedGoogle Scholar
  84. 84.
    Leo C, Yang X, Liu J, Li H, Chen JD (2001) Role of retinoid receptor coactivator pockets in cofactor recruitment and transcriptional regulation. J Biol Chem 276:23127–23134PubMedGoogle Scholar
  85. 85.
    Li Y, Zhang Y, Hill J, Shen Q, Kim H-T, Xu X, Hilsenbeck SG, Bissonnette RP, Lamph WW, Brown PH (2007) The rexinoid LG100268 prevents the development of preinvasive and invasive estrogen receptor negative tumors in MMTV-erbB2 mice. Clin Cancer Res 13:6224–6231PubMedGoogle Scholar
  86. 86.
    Liao J, Ozono K, Sone T, Mcdonnell DP, Pike JW (1990) Vitamin D receptor interaction with specific DNA requires a nuclear protein and 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 87:9751–9788PubMedCentralPubMedGoogle Scholar
  87. 87.
    Liby K, Royce DB, Risingsong R, Williams CR, Wood MD, Chandraratna RA, Sporn MB (2007) A new rexinoid, NRX194204, prevents carcinogenesis in both the lung and mammary gland. Clin Cancer Res 13:6237–6243PubMedGoogle Scholar
  88. 88.
    Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7:357–369PubMedGoogle Scholar
  89. 89.
    Liu Q, Linney E (1993) The mouse retinoid-X receptor-gamma gene: genomic organization and evidence for functional isoforms. Mol Endocrinol 7:651–658PubMedGoogle Scholar
  90. 90.
    Mader S, Leroy P, Chen J-Y, Chambon P (1993) Multiple parameters control the selectivity of nuclear receptors for their response elements. J Biol Chem 268:591–600PubMedGoogle Scholar
  91. 91.
    Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou J, Ong ES, Oro A, Kakizuka A, Evans RM (1992) Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6:329–344PubMedGoogle Scholar
  92. 92.
    Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83:841–850PubMedGoogle Scholar
  93. 93.
    Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM (1990) Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224–229PubMedGoogle Scholar
  94. 94.
    Mangelsdorf DJ, Umesono K, Kilewer SA, Borgmeyer U, Ong ES, Evans RM (1991) A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66:555–561PubMedGoogle Scholar
  95. 95.
    Marks MS, Hallenbeck PL, Nagata T, Segars JH, Appella E, Nikodem VM, Ozato K (1992) H-2RIIBP (RXR beta) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J 11:1419–1435PubMedCentralPubMedGoogle Scholar
  96. 96.
    Martens JHA, Brinkman AB, Simmer F, Francoijs K-J, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG (2010) PML-RARa/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17:173–185PubMedGoogle Scholar
  97. 97.
    Matsushima-Nishiwaki R, Okuno M, Adachi S, Sano T, Akita K, Moriwaki H, Friedman SL, Kojima S (2001) Phosphorylation of retinoid X receptor alpha at Serine 260 impairs its metabolism and function in human hepatocellular carcinoma. Cancer Res 61:7675–7682PubMedGoogle Scholar
  98. 98.
    Mehta K, Mcqueen T, Neamati N, Collins S, Andreeff M (1996) Activation of retinoid receptors RAR alpha and RXR alpha induces differentiation and apoptosis, respectively, in HL-60 cells. Cell Growth Differ 7:179–186PubMedGoogle Scholar
  99. 99.
    Meyer MB, Goetsch PD, Pike JW (2010) Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. J Steroid Biochem Mol Biol 121:136–141PubMedCentralPubMedGoogle Scholar
  100. 100.
    Michellys PY, Ardecky RJ, Chen JH, Crombie DL, Etgen GJ, Faulkner AL, Grese TA, Heyman RA, Karanewsky DS, Klausing K, Leibowitz MD, Liu S, Mais DA, Mapes CM, Marschke KB, Reifel-Miller A, Ogilvie KM, Rungta D, Thompson AW, Tyhonas JS, Boehm MF (2003) Novel (2E,4E,6Z)-7-(2-Alkoxy-3,5-dialkylbenzene)-3-methylocta-2,4,6-trienoic acid retinoid X receptor modulators are active in models of type 2 diabetes. J Med Chem 46:2683–2696PubMedGoogle Scholar
  101. 101.
    Miesfeld R, Okret S, Wikstrom A-C, Wrange O, Gustafsson J-A, Yamamoto KR (1984) Characterization of a steroid hormone receptor gene and mRNA in wild-type and mutant cells. Nature 312:779–781PubMedGoogle Scholar
  102. 102.
    Moise AR, Alvarez S, Dominguez M, Alvarez R, Golczak M, Lobo GP, Von Lintig J, De Lera AR, Palczewski K (2009) Activation of retinoic acid receptors by dihydroretinoids. Mol Pharmacol 76:1228–1237PubMedCentralPubMedGoogle Scholar
  103. 103.
    Murray MB, Towle HC (1989) Identification of nuclear factors that enhance binding of the htyroid hormone receptor to a thyroid hormone response element. Mol Endocrinol 3:1434–1442PubMedGoogle Scholar
  104. 104.
    Naar AM, Boutin J, Lipkin SM, Yu VC, Holloway JM, Glass CK, Rosenfeld MG (1991) The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65:1267–1279PubMedGoogle Scholar
  105. 105.
    Nagy L, Thomazy VA, Shipley GL, Fesus L, Lamph W, Heyman RA, Chandraratna RA, Davies PJ (1995) Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol Cell Biol 15:3540–3551PubMedCentralPubMedGoogle Scholar
  106. 106.
    Nielsen R, Pedersen T, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, Borgesen M, Francoijs K-J, Mandrup S, Stunnenberg HG (2008) Genome-wide profiling of PPARgamma: RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 22:2953–2967PubMedCentralPubMedGoogle Scholar
  107. 107.
    Nishimaki-Mogami T, Tamehiro N, Sato Y, Okuhira K-I, Sai K, Kagechika H, Shudo K, Abe-Dohmae S, Yokoyama S, Ohno Y, Inoue K, Sawada J-I (2008) The RXR agonists PA024 and HX630 have different abilities to activate LXR/RXR and to induce ABCA1 expression in macrophage cell lines. Biochem Pharmacol 76:1006–1013PubMedGoogle Scholar
  108. 108.
    Nunez V, Alameda D, Rico D, Mota R, Gonzalo P, Cedenilla M, Fischer T, Bosca L, Glass CK, Arroyo AG, Ricote M (2010) Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression. Proc Natl Acad Sci 107:10626–10631PubMedCentralPubMedGoogle Scholar
  109. 109.
    Orlov I, Rochel N, Moras D, Klaholz BP (2012) Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. EMBO J 31:291–300PubMedCentralPubMedGoogle Scholar
  110. 110.
    Pérez E, Bourguet W, Gronemeyer H, De Lera AR (2012) Modulation of RXR function through ligand design. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1821:57–69Google Scholar
  111. 111.
    Perlmann T, Jansson L (1995) A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev 9:769–782PubMedGoogle Scholar
  112. 112.
    Perlmann T, Umesono K, Rangarajan PN, Forman BM, Evans RM (1996) Two distinct dimerization interfaces differentially modulate target gene specificity of nuclear hormone receptors. Mol Endocrinol 10:958–966PubMedGoogle Scholar
  113. 113.
    Pogenberg V, Guichou J-FO, Vivat-Hannah V, Kammerer S, Perez E, Germain P, De Lera AR, Gronemeyer H, Royer CA, Bourguet W (2005) Characterization of the Interaction between retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. J Biol Chem 280:1625–1633PubMedGoogle Scholar
  114. 114.
    Putcha B-DK, Fernandez EJ (2009) Direct interdomain interactions can mediate allosterism in the thyroid receptor. J Biol Chem 284:22517–22524PubMedCentralPubMedGoogle Scholar
  115. 115.
    Ramlau R, Zatloukal P, Jassem J, Schwarzenberger P, Orlov SV, Gottfried M, Pereira JR, Temperley G, Negro-Vilar R, Rahal S, Zhang JK, Negro-Vilar A, Dziewanowska ZE (2008) Randomized phase III trial comparing bexarotene (L1069-49)/cisplatin/vinorelbine with cisplatin/vinorelbine in chemotherapy-naive patients with advanced or metastatic non-small-cell lung cancer: SPIRIT I. J Clin Oncol 26:1886–1892PubMedGoogle Scholar
  116. 116.
    Rizvi NA, Marshall JL, Dahut W, Ness E, Truglia JA, Loewen G, Gill GM, Ulm EH, Geiser R, Jaunakais D, Hawkins MJ (1999) A phase I study of LGD1069 in adults with advanced cancer. Clin Cancer Res 5:1658–1664PubMedGoogle Scholar
  117. 117.
    Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C, Moulin M, Haertlein M, Callow P, Mély Y, Svergun DI, Moras D (2011) Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol 18:564–570PubMedGoogle Scholar
  118. 118.
    Saga Y, Kobayashi M, Ohta H, Murai N, Nakai N, Oshima M, Taketo MM (1999) Impaired extrapyramidal function caused by the targeted disruption of retinoid X receptor RXRγ1 isoform. Genes Cells 4:219–228PubMedGoogle Scholar
  119. 119.
    Sanguedolce MV, Leblanc BP, Betz JL, Stunnenberg HG (1997) The promoter context is a decisive factor in establishing selective responsiveness to class II nuclear receptors. EMBO J 15:2861–2873Google Scholar
  120. 120.
    Santos GM, Fairall L, Schwabe JWR (2011) Negative regulation by nuclear receptors: a plethora of mechanisms. Trends Endocrinol Metab 22:87–93PubMedCentralPubMedGoogle Scholar
  121. 121.
    Shen Q, Bai Y, Chang KCN, Wang Y, Burris TP, Freedman LP, Thompson CC, Nagpal S (2011) Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer cistrome reveals coordination of LXR and AP1 signaling in keratinocytes. J Biol Chem 286:14554–14563PubMedCentralPubMedGoogle Scholar
  122. 122.
    Shen Q, Cline GW, Shulman GI, Leibowitz MD, Davies PJA (2004) Effects of rexinoids on glucose transport and insulin-mediated signaling in skeletal muscles of diabetic (db/db) mice. J Biol Chem 279:19721–19731PubMedGoogle Scholar
  123. 123.
    Shulman AI, Larson C, Mangelsdorf DJ, Ranganathan R (2004) Structural determinants of allosteric ligand activation in RXR heterodimers. Cell 116:417–429PubMedGoogle Scholar
  124. 124.
    Son YL, Lee YC (2009) Molecular determinants of the interactions between LXR/RXR heterodimers and TRAP2 20. Biochem Biophys Res Commun 384:389–393PubMedGoogle Scholar
  125. 125.
    Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM (1994) RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8:1007–1018PubMedGoogle Scholar
  126. 126.
    Suino K, Peng L, Reynolds R, Li Y, Cha J-Y, Repa JJ, Kliewer SA, Xu HE (2004) The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. Mol Cell 16:893–905PubMedGoogle Scholar
  127. 127.
    Svensson S, Ostberg T, Jacobsson M, Norstrom C, Stefansson K, Hallen D, Johansson IC, Zachrisson K, Ogg D, Jendeberg L (2003) Crystal structure of the heterodimeric complex of LXR[alpha] and RXR[beta] ligand-binding domains in a fully agonistic conformation. EMBO J 22:4625–4633PubMedCentralPubMedGoogle Scholar
  128. 128.
    Szeles L, Poliska S, Nagy G, Szatmari I, Szanto A, Pap A, Lindstedt M, Santegoets SJAM, Ruhl R, Dezso B, Nagy L (2010) Research resource: transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells. Mol Endocrinol 24:2218–2231PubMedCentralPubMedGoogle Scholar
  129. 129.
    Takiyama Y, Miyokawa N, Sugawara A, Kato S, Ito K, Sato K, Oikawa K, Kobayashi H, Kimura S, Tateno M (2004) Decreased expression of retinoid X receptor isoforms in human thyroid carcinomas. J Clin Endocrinol Metab 89:5851–5861PubMedGoogle Scholar
  130. 130.
    Tanaka T, Rodriguez De La Conception ML, De Luca LM (2001) Involvement of all-trans-retinoic acid in the breakdown of retinoic acid receptors alpha and gamma through proteasomes in mcf-7 human breast cancer cells. Biochem Pharmacol 61:1347–1355PubMedGoogle Scholar
  131. 131.
    Tudor C, Feige JRMN, Pingali H, Lohray VB, Wahli W, Desvergne BA, Engelborghs Y, Gelman L (2007) Association with coregulators is the major determinant governing peroxisome proliferator-activated receptor mobility in living cells. J Biol Chem 282:4417–4426PubMedGoogle Scholar
  132. 132.
    Urquiza AMD, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, Perlmann T (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144PubMedGoogle Scholar
  133. 133.
    Wahlstrom GM, Sjoberg M, Andersson M, Nordstrom K, Vennstrom B (1992) Binding characteristics of the thyroid hormone receptor homo- and heterodimers to consensus AGGTCA repeat motifs. Mol Endocrinol 6Google Scholar
  134. 134.
    Wan YJ, An D, Cai Y, Repa JJ, Chen THP, Flores M, Postic C, Magnuson MA, Chen J, Chien KR, French S, Mangelsdorf DJ, Sucov HM (2000) Hepatocyte-specific mutation establishes retinoid X receptor a as a heterodimeric integrator of multiple physiological processes in the liver. Mol Cell Biol 20:4436–4444PubMedCentralPubMedGoogle Scholar
  135. 135.
    Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu HE, Walker NP, Perlmann T (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423:555–560PubMedGoogle Scholar
  136. 136.
    Weinberger C, Hollenberg SM, Ong ES, Harmon JM, Brower ST, Cidlowski J, Thompson EB, Rosenfeld MG, Evans RM (1985) Identification of human glucocorticoid receptor complementary DNA clones by epitope selection. Science 228:740–742PubMedGoogle Scholar
  137. 137.
    Westin S, Korokawa R, Nolte RT, Wisely GB, Mcinerney EM, Milburn MV, Rosenfeld MG, Glass CK (1998) Interactions controlling the assembly of nuclear-receptor heterodimers and coactivators. Nature 395:199–202PubMedGoogle Scholar
  138. 138.
    Willy P, Umesono K, Ong E, Evans R, Heyman R, Mangelsdorf D (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 9:1033–1045PubMedGoogle Scholar
  139. 139.
    Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge C, Haase J, Janes J, Huss J, Su A (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10:R130PubMedCentralPubMedGoogle Scholar
  140. 140.
    Xie W, Barwick JL, Simon CM, Pierce AM, Safe S, Blumberg B, Guzelian PS, Evans RM (2000) Reciprocal activation of xenobiotic response genes by nuclear receptors SXR/PXR and CAR [In Process Citation]. Genes Dev 14:3014–3023PubMedCentralPubMedGoogle Scholar
  141. 141.
    Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT Jr, Mckee DD, Moore JT, Willson TM (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 98:13919–13924PubMedCentralPubMedGoogle Scholar
  142. 142.
    Xu RX, Lambert MH, Wisely BB, Warren EN, Weinert EE, Waitt GM, Williams JD, Collins JL, Moore LB, Willson TM, Moore JT (2004) A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. Mol Cell 16:919–928PubMedGoogle Scholar
  143. 143.
    Yasmin R, Yeung KT, Chung RH, Gaczynska ME, Osmulski PA, Noy N (2004) DNA-looping by rxr tetramers permits transcriptional regulation “at a distance”. J Mol Biol 343:327–338PubMedGoogle Scholar
  144. 144.
    Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, Naar AM, Kim SY, Boutin JM, Glass CK, Rosenfeld MG (1991) RXRbeta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 67:1251–1266PubMedGoogle Scholar
  145. 145.
    Zeisig BB, Kwok C, Zelent A, Shankaranyanan H, Gronemeyer H, Dong S, So CW (2007) Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 12:36–51PubMedGoogle Scholar
  146. 146.
    Zhang J, Chalmers MJ, Stayrook KR, Burris LL, Wang Y, Busby SA, Pascal BD, Garcia-Ordonez RD, Bruning JB, Istrate MA, Kojetin DJ, Dodge JA, Burris TP, Griffin PR (2011) DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 18:556–563PubMedCentralPubMedGoogle Scholar
  147. 147.
    Zhang XK, Hoffman BE, Tran PBV, Graupner G, Pfahl M (1992) Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355:441–446PubMedGoogle Scholar
  148. 148.
    Zhou H, Liu W, Su Y, Wei Z, Liu J, Kolluri SK, Wu H, Cao Y, Chen J, Wu Y, Yan T, Cao X, Gao W, Molotkov A, Jiang F, Li W-G, Lin B, Zhang H-P, Yu J, Luo S-P, Zeng J-Z, Duester G, Huang P-Q, Zhang X-K (2010) NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell 17:560–573PubMedCentralPubMedGoogle Scholar
  149. 149.
    Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J (2007) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 13:695–702PubMedCentralPubMedGoogle Scholar
  150. 150.
    Ziouzenkova O, Orasanu G, Sukhova G, Lau E, Berger JP, Tang G, Krinsky NI, Dolnikowski GG, Plutzky J (2007) Asymmetric cleavage of beta carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses. Mol Endocrinol 21:77–88PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland

Personalised recommendations