Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 70))

Abstract

Nuclear Retinoic Acid receptors (RARs) consist of three subtypes, α, β, and γ, encoded by separate genes. They function as ligand-dependent transcriptional regulators, forming heterodimers with Retinoid X receptors (RXRs). RARs mediate the effects of retinoic acid (RA), the active metabolite of Vitamin A, and regulate many biological functions such as embryonic development, organogenesis, homeostasis, vision, immune functions, and reproduction. During the two last decades, a number of in-depth structure–function relationship studies have been performed, in particular with drug design perspectives in the therapeutics for cancer, dermatology, metabolic disease, and other human diseases. Recent structural results concerning integral receptors in diverse functional states, obtained using a combination of different methods, allow a better understanding of the mechanisms involved in molecular regulation. The structural data highlight the importance of DNA sequences for binding selectivity and the role of promoter response elements in the spatial organization of the protein domains into functional complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF-1:

Activation function 1

AF-2:

Activation function 2

ChIP:

Chromatin immuno-precipitation

DBD:

DNA binding domain

DR:

Direct repeat

Cryo-EM:

Cryo-electron microscopy

FRET:

Fluorescence resonance energy transfer

GR:

Glucocorticoid receptor

HDX:

Hydrogen deuterium exchange

IR:

Inverted repeat

LBD:

Ligand binding domain

LBP:

Ligand binding pocket

NR:

Nuclear receptor

NTD:

N-terminal domain

PPAR:

Peroxisome proliferator-activated receptor

RA:

All-trans retinoic acid

RAR:

Retinoic acid nuclear receptor

RARE:

Retinoic acid nuclear receptor response element

RXR:

Retinoid X nuclear receptor

SANS:

Small angle neutron scattering

SAXS:

Small angle X-ray scattering

VDR:

Vitamin D nuclear receptor

References

  1. Aoyagi S, Archer TK (2008) Dynamics of coactivator recruitment and chromatin modifications during nuclear receptor mediated transcription. Mol Cell Endo 280:1–5

    Article  CAS  Google Scholar 

  2. Balmer JE, Blomhoff R (2005) A robust characterization of retinoic acid response elements based on a comparison of sites in three species. J Steroid Biochem Mol Biol 96:347–354

    Article  CAS  PubMed  Google Scholar 

  3. Berger I, Blanco AG, Boelens R, Cavarelli J, Coll M, Folkers GE, Nie Y, Pogenberg V, Schultz P, Wilmanns M, Moras D, Poterszman A (2011) Structural insights into transcription complexes. J Struct Biol 175:135–146

    Article  CAS  PubMed  Google Scholar 

  4. Billas I, Moras D (2013) Allosteric controls of nuclear receptor function in the regulation of transcription. J Mol Biol 425:2317–2329

    Article  CAS  PubMed  Google Scholar 

  5. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375:377–382

    Article  CAS  PubMed  Google Scholar 

  6. Bourguet W, Vivat V, Wurtz JM, Chambon P, Gronemeyer H, Moras D (2000) Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol Cell 5:289–298

    Article  CAS  PubMed  Google Scholar 

  7. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456:350–356

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chandra V, Huang P, Potluri N, Wu D, Kim Y, Rastinejad F (2013) Multidomain integration in the structure of the HNF-4alpha nuclear receptor complex. Nature 495:394–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cramer P, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863–1876

    Article  CAS  PubMed  Google Scholar 

  10. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398

    Article  CAS  PubMed  Google Scholar 

  11. Delacroix L, Moutier E, Altobelli G, Legras S, Poch O, Choukrallah MA, Bertin I, Jost B, Davidson I (2010) Cell-specific interaction of retinoic acid receptors with target genes in mouse embryonic fibroblasts and embryonic stem cells. Mol Cell Biol 30:231–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Egea PF, Mitschler A, Rochel N, Ruff M, Chambon P, Moras D (2000) Crystal structure of the human RXRalpha ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. EMBO J 19:2592–2601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Germain P, Iyer J, Zechel C, Gronemeyer H (2002) Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415:187–192

    Article  CAS  PubMed  Google Scholar 

  14. Gherardi E, Sandin S, Petoukhov MV, Finch J, Youles ME, Ofverstedt LG, Miguel RN, Blundell TL, Vande Woude GF, Skoglund U, Svergun DI (2006) Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci USA 103:4046–4051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    CAS  PubMed  Google Scholar 

  16. Hammel M (2012) Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). Eur Biophys J 41:789–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Helsen C, Claessens F (2013) Looking at nuclear receptors from a new angle. Mol Cell Endocrinol 382:97–106

    Article  PubMed  Google Scholar 

  18. Hua S, Kittler R, White KP (2009) Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137:1259–1271

    Article  PubMed Central  PubMed  Google Scholar 

  19. Jin L, Li Y (2010) Structural and functional insights into nuclear receptor signaling. Adv Drug Deliv Rev 62:1218–1226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kersten S, Dawson MI, Lewis BA, Noy N (1996) Individual subunits of heterodimers comprised of retinoic acid and retinoid X receptors interact with their ligands independently. Biochemistry 35:3816–3824

    Article  CAS  PubMed  Google Scholar 

  21. Kim SH, Suddath FL, Quigley GJ, McPherson A, Sussman JL, Wang AH, Seeman NC, Rich A (1974) Three-dimensional structure of yeast phenylalanine transfer RNA. Science 185:435–440

    Article  CAS  PubMed  Google Scholar 

  22. Konermann L, Pan J, Liu YH (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40:1224–1234

    Article  CAS  PubMed  Google Scholar 

  23. Lala DS, Mukherjee R, Schulman IG, Koch SS, Dardashti LJ, Nadzan AM, Croston GE, Evans RM, Heyman RA (1996) Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature 383:450–453

    Article  CAS  PubMed  Google Scholar 

  24. le Maire A, Teyssier C, Erb C, Grimaldi M, Alvarez S, de Lera AR, Balaguer P, Gronemeyer H, Royer CA, Germain P, Bourguet W (2010) A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol 17:801–807

    Article  PubMed  Google Scholar 

  25. Lonard DM, O’Malley BW (2012) Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol 8:598–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352:497–505

    Article  CAS  PubMed  Google Scholar 

  27. Mader S, Chen JY, Chen Z, White J, Chambon P, Gronemeyer H (1993) The patterns of binding of RAR, RXR and TR homo- and heterodimers to direct repeats are dictated by the binding specificites of the DNA binding domains. EMBO J 12:5029–5041

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG (2010) PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell 17:173–185

    Article  CAS  PubMed  Google Scholar 

  29. Martens JH, Rao NA, Stunnenberg HG (2011) Genome-wide interplay of nuclear receptors with the epigenome. Biochim Biophys Acta 1812:818–823

    Article  CAS  PubMed  Google Scholar 

  30. McEwan IJ (2012) Nuclear hormone receptors: allosteric switches. Mol Cell Endocrinol 348:345–347

    Article  CAS  PubMed  Google Scholar 

  31. McEwan IJ, Lavery D, Fischer K, Watt K (2007) Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors. Nucl Recept Signal 5:e001

    PubMed Central  PubMed  Google Scholar 

  32. Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR (2009) DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324:407–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Moutier E, Ye T, Choukrallah MA, Urban S, Osz J, Chatagnon A, Delacroix L, Langer D, Rochel N, Moras D, Benoit G, Davidson I (2012) Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. J Biol Chem 287:26328–26341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nagy L, Kao HY, Love JD, Li C, Banayo E, Gooch JT, Krishna V, Chatterjee K, Evans RM, Schwabe JW (1999) Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13:3209–3216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 95:137–143

    Google Scholar 

  36. Orlov I, Rochel N, Moras D, Klaholz BP (2012) Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. EMBO J 31:291–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Osz J, Pethoukhov MV, Sirigu S, Svergun DI, Moras D, Rochel N (2012) Solution structures of PPARgamma2/RXRalpha complexes. PPAR Res 701412

    Google Scholar 

  38. Osz J, Brélivet Y, Peluso-Iltis C, Cura V, Eiler S, Ruff M, Bourguet W, Rochel N, Moras D (2012) Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proc Natl Acad Sci USA 109:E588–E594

    Article  PubMed Central  PubMed  Google Scholar 

  39. Pawlak M, Lefebvre P, Staels B (2012) General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 12:486–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Perissi V, Rosenfeld MG (2005) Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6:542–554

    Article  CAS  PubMed  Google Scholar 

  41. Perlmann T, Rangarajan PN, Umesono K, Evans RM (1993) Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev 7:1411–1422

    Article  CAS  PubMed  Google Scholar 

  42. Pogenberg V, Guichou JF, Vivat-Hannah V, Kammerer S, Pérez E, Germain P, de Lera AR, Gronemeyer H, Royer CA, Bourguet W (2005) Characterization of the interaction between retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. J Biol Chem 280:1625–1633

    Article  CAS  PubMed  Google Scholar 

  43. Putcha BD, Fernandez EJ (2009) Direct interdomain interactions can mediate allosterism in the thyroid receptor. J Biol Chem 284:22517–22524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Rambo RP, Tainer JA (2013) Super-resolution in solution x-ray scattering and its applications to structural systems biology. Annu Rev Biophys. 42:415–441

    Article  CAS  PubMed  Google Scholar 

  45. Rastinejad F, Wagner T, Zhao Q, Khorasanizadeh S (2000) Structure of the RXR-RAR DNA-binding complex on the retinoic acid response element DR1. EMBO J 19:1045–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689

    Article  CAS  PubMed  Google Scholar 

  47. Robertus JD, Ladner JE, Finch JT, Rhodes D, Brown RS, Clark BF, Klug A (1974) Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 250:546–551

    Article  CAS  PubMed  Google Scholar 

  48. Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C, Moulin M, Haertlein M, Callow P, Mély Y, Svergun DI, Moras D (2011) Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol 18:564–570

    Article  CAS  PubMed  Google Scholar 

  49. Rould MA, Perona JJ, Söll D, Steitz TA (1989) Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science 246:1135–1142

    Article  CAS  PubMed  Google Scholar 

  50. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D (1991) Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science 252:1682–1689

    Article  CAS  PubMed  Google Scholar 

  51. Santos GM, Fairall L, Schwabe JW (2011) Negative regulation by nuclear receptors: a plethora of mechanisms. Trends Endocrinol Metab 22:87–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Sato Y, Ramalanjaona N, Huet T, Potier N, Osz J, Antony P, Peluso-Iltis C, Poussin-Courmontagne P, Ennifar E, Mély Y, Dejaegere A, Moras D, Rochel N (2010) The phantom effect of the Rexinoid LG100754: structural and functional insights. PLoS ONE 5:e15119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Schulman IG, Li C, Schwabe JW, Evans RM (1997) The phantom ligand effect: allosteric control of transcription by the retinoid X receptor. Genes Dev 11:299–308

    Article  CAS  PubMed  Google Scholar 

  54. Schwabe JW, Neuhaus D, Rhodes D (1990) Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 348(6300):458–461

    Article  CAS  PubMed  Google Scholar 

  55. Svergun DI, Petoukhov MV, Koch MH, König S (2000) Crystal versus solution structures of thiamine diphosphate-dependent enzymes. J Biol Chem 275:297–302

    Article  CAS  PubMed  Google Scholar 

  56. Svergun DI, Petoukhov MV, Koch MH (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80:2946–2953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Watson LC, Kuchenbecker KM, Schiller BJ, Gross JD, Pufall MA, Yamamoto KR (2013) The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat Struct Mol Biol 20(7):876–883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, Gronemeyer H (1996) A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 3:87–94

    Article  CAS  PubMed  Google Scholar 

  59. Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT Jr, McKee DD, Moore JT, Willson TM (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 98:13919–13924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292:883–896

    Article  CAS  PubMed  Google Scholar 

  61. Zhang J, Chalmers MJ, Stayrook KR, Burris LL, Wang Y, Busby SA, Pascal BD, Garcia-Ordo nez RD, Bruning JB, Istrate MA, Kojetin DJ, Dodge JA, Burris TP, Griffin PR (2011) DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 18:556–563

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natacha Rochel or Dino Moras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rochel, N., Moras, D. (2014). Architecture of DNA Bound RAR Heterodimers. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoic Acid Receptors I: Structure, Activation, and Function at the Molecular Level. Subcellular Biochemistry, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9050-5_2

Download citation

Publish with us

Policies and ethics