Skip to main content
  • 1167 Accesses

Abstract

Biological systems display complex dynamics emerging from intricate networks of interacting molecular components: cells use signalling pathways and regulatory control mechanisms to coordinate multiple processes, allowing them to respond and adapt to an ever-changing environment. Many structural and dynamical features of biological control systems can also be found in engineered control systems and, hence, feedback control theory can provide a useful approach for the analysis and design of complex biological systems. In this chapter we provide a control theoretic analysis of the osmoregulation system in Saccharomyces cerevisiae (see [8, 24, 26, 40]), where a complex biochemical signalling and regulatory network allows cells to maintain homeostasis in the face of osmotic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland Publishing, Inc., New York

    Google Scholar 

  2. Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) Gpd1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14(6):4135–4144

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Blossey R, Bodart JF, Devys A, Goudon T, Lafitte P (2012) Signal propagation of the MAPK cascade in Xenopus oocytes: role of bistability and ultrasensitivity for a mixed problem. J Math Biol 64(1–2):1–39

    Article  PubMed  Google Scholar 

  4. Buchler NE, Cross FR (2009) Protein sequestration generates a flexible ultrasensitive response in a genetic network. Mol Syst Biol 5:272

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cosentino C, Bates DG (2011) Feedback control in systems biology. CRC Press (Taylor & Francis), Boca Raton

    Google Scholar 

  6. El-Samad H, Goff JP, Khammash M (2002) Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. J Theor Biol 214(1):17–29

    Article  CAS  PubMed  Google Scholar 

  7. Fleming PJ, Purshouse RC (2002) Evolutionary algorithms in control systems engineering: a survey. Control Eng Pract 10:1223–1241

    Article  Google Scholar 

  8. Gennemark P, Nordlander B, Hohmann S, Wedelin D (2006) A simple mathematical model of adaptation to high osmolarity in yeast. Silico Biol 6(3):193–214

    CAS  Google Scholar 

  9. Gervais P, Beney L (2001) Osmotic mass transfer in the yeast saccharomyces cerevisiae. Cell Mol Biol (Noisy-le-grand) 47(5):831–839

    CAS  Google Scholar 

  10. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    Google Scholar 

  11. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. PNAS 78(11):6840–6844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ho SN (2006) Intracellular water homeostasis and the mammalian cellular osmotic stress response. J Cell Physiol 206(1):9–15. doi:10.1002/jcp.20445, http://dx.doi.org/10.1002/jcp.20445

  13. Huang CY, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. PNAS 93(19):10078–10083

    Google Scholar 

  14. Ingalls BP, Yi T, Iglesias P (2006) Using control theory to study biology. In: Knabe JF, Nehaniv CL, Schilstra MJ (eds) System modeling in cellular biology. MIT Press, Cambridge, pp 243–267

    Google Scholar 

  15. Klipp E, Nordlander B, Krger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23(8):975–982. doi:10.1038/nbt1114, http://dx.doi.org/10.1038/nbt1114

  16. Kltz D, Burg M (1998) Evolution of osmotic stress signaling via map kinase cascades. J Exp Biol 201(Pt 22):3015–3021

    Google Scholar 

  17. Levin RL, Ushiyama M, Cravalho EG (1979) Water permeability of yeast cells at sub-zero temperatures. J Membr Biol 46(2):91–124

    Article  CAS  PubMed  Google Scholar 

  18. Lobo FG, Goldberg D (1996) Decision making in a hybrid genetic algorithm. IlliGAL Report No 96009

    Google Scholar 

  19. Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the mip family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14(7):1360–1371

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138(4):760–773. doi:10.1016/j.cell.2009.06.013, http://dx.doi.org/10.1016/j.cell.2009.06.013

  21. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164(3):353–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. MATLAB (1990) Optimization Toolbox User’s Guide. Natick, MA

    Google Scholar 

  23. MATLAB (2004) Global Optimization Toolbox User’s Guide. Natick, MA

    Google Scholar 

  24. Mettetal JT, Muzzey D, Gómez-Uribe C, van Oudenaarden A (2008) The frequency dependence of osmo-adaptation in saccharomyces cerevisiae. Science 319(5862):482–484. doi:10.1126/science.1151582, http://dx.doi.org/10.1126/science.1151582

  25. Montefusco F, Steinacher A, Akman OE, Bates DG, Soyer OS (2012) On the role of ultrasensitivity in biomolecular control systems. In: Proceedings of the 51st IEEE CDC conference, Maui, Hawaii.

    Google Scholar 

  26. Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138(1):160–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ni XY, Drengstig T, Ruoff P (2009) The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation. Biophys J 97(5):1244–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Proft M, Struhl K (2004) Map kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118(3):351–361. doi:10.1016/j.cell.2004.07.016, http://dx.doi.org/10.1016/j.cell.2004.07.016

  29. Reed RH, Chudek JA, Foster R, Gadd GM (1987) Osmotic significance of glycerol accumulation in exponentially growing yeasts. Appl Environ Microbiol 53(9):2119–2123

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of saccharomyces cerevisiae to osmotic shock. hot1p and msn2p/msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275(12):8290–8300

    Article  CAS  PubMed  Google Scholar 

  31. Schaber J, Adrover MA, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, Posas F, Goksör M, Peter M, Hohmann S, Klipp E (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J 39(11):1547–1556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Skogestad S, Postlethwaite I (1996) Multivariable feedback control: analysis and design. Wiley, Chichester

    Google Scholar 

  33. Smith AE, Zhang Z, Thomas CR (2000) Wall materials properties of yeast cells: part 1. Cell measurements and compression experiments. Chem Eng Sci 55:2031–2041

    Article  CAS  Google Scholar 

  34. Sontag E (2003) Adaptation and regulation with signal detection implies internal model. Syst Contr Lett 50:119–126

    Article  Google Scholar 

  35. Sunder S, Singh AJ, Gill S, Singh B (1996) Regulation of intracellular level of na+, k+ and glycerol in saccharomyces cerevisiae under osmotic stress. Mol Cell Biochem 158(2):121–124

    Article  CAS  PubMed  Google Scholar 

  36. Tams MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31(4):1087–1104

    Article  Google Scholar 

  37. Thorsen M, Di Y, Tngemo C, Morillas M, Ahmadpour D, Van der Does C, Wagner A, Johansson E, Boman J, Posas F, Wysocki R, Tams MJ (2006) The mapk hog1p modulates fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17(10):4400–4410. doi:10.1091/mbc.E06-04-0315, http://dx.doi.org/10.1091/mbc.E06-04-0315

  38. Westfall PJ, Patterson JC, Chen RE, Thorner J (2008) Stress resistance and signal fidelity independent of nuclear mapk function. Proc Natl Acad Sci U S A 105(34):12212–12217. doi:10.1073/pnas.0805797105, http://dx.doi.org/10.1073/pnas.0805797105

  39. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. PNAS 97(9):4649–4653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zi Z, Liebermeister W, Klipp E (2010) A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS One 5(3):e9522

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Montefusco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Montefusco, F., Akman, O.E., Soyer, O.S., Bates, D.G. (2014). Modelling and Analysis of Feedback Control Mechanisms Underlying Osmoregulation in Yeast. In: Kulkarni, V., Stan, GB., Raman, K. (eds) A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9047-5_4

Download citation

Publish with us

Policies and ethics