From Specification to Parameters: A Linearization Approach

  • Heinz KoepplEmail author
  • Marc Hafner
  • James Lu


With the improvement of protocols for the assembly of transcriptional parts, synthetic biological devices can now be reliably assembled based on a design. The standardization of the parts open up the way for in silico design tools that improve the construct and optimize devices with respect to given formal specifications. The simplest such optimization is the selection of kinetic parameters and protein abundances such that the specified constraints are robustly satisfied. In this chapter we address the problem of determining parameter values that fulfill specifications expressed in terms of a functional on the trajectories of a dynamical model. We solve this inverse problem by linearizing the forward operator that maps parameter sets to specifications, and then inverting it locally. This approach has two advantages over brute-force random sampling. First, the linearization approach allows us to map back intervals instead of points and second, every obtained value in the parameter region is satisfying the specifications by construction.


Linearization Parameters Temporal logic Linear temporal logic (LTL) Specification functionals Stoichiometric matrix State space Equilibrium point Bifurcation point Inverse bifurcation analysis Inverse bifurcation synthesis 



H.K. acknowledges the support from the Swiss National Science Foundation (SNSF) grant number PP00P2_128503.


  1. 1.
    Nandagopal N, Elowitz MB (2011) Synthetic biology: integrated gene circuits. Science 333:1244–1248PubMedCrossRefGoogle Scholar
  2. 2.
    Lu TK, Khalil AS, Collins JJ (2009) Next-generation synthetic gene networks. Nat Biotechnol 27:1139–1150PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bowsher CG, Swain PS (2012) Identifying sources of variation and the flow of information in biochemical networks. Proc Natl Acad Sci USA 109:E1320–E1328Google Scholar
  4. 4.
    Hilfinger A, Paulsson J (2011) Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc Natl Acad Sci USA 108:15004–15009Google Scholar
  5. 5.
    Zechner C, Ruess J, Krenn P, Pelet S, Peter M et al (2012) Moment-based inference predicts bimodality in transient gene expression. Proc Natl Acad Sci USA 109:8340–8345Google Scholar
  6. 6.
    Bleris L, Xie Z, Glass D, Adadey A, Sontag E et al (2011) Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol Syst Biol 7:519PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Miller M, Hafner M, Sontag E, Davidsohn N, Subramanian S et al (2012) Modular design of artificial tissue homeostasis: Robust control through synthetic cellular heterogeneity. PLoS Comput Biol 8:e1002579PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Baier C, Katoen JP (2008) Principles of model checking. The MIT Press, LondonGoogle Scholar
  9. 9.
    Rizk A, Batt G, Fages F, Soliman S (2011) Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures. Theor Comput Sci 412:2827–2839CrossRefGoogle Scholar
  10. 10.
    Engl H, Hanke M, Neubauer A (1996) Regularization of inverse problems (Mathematics and its applications). Kluwer, DordrechtGoogle Scholar
  11. 11.
    Christian HP (1998) Rank-Deficient and Discrete Ill-Posed Problems. SIAM, 51(3):455–500Google Scholar
  12. 12.
    Lu J, Engl HW, Schuster P (2006) Inverse bifurcation analysis: application to simple gene systems. Algorithms Mol Biol 1:11PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Engl HW, Flamm C, Kügler P, Lu J, Müller S et al (2009) Inverse problems in systems biology. Inverse Prob 25:123014CrossRefGoogle Scholar
  14. 14.
    Lu J, August E, Koeppl H (2012) Inverse problems from biomedicine : inference of putative disease mechanisms and robust therapeutic strategies. J Math Biol 67(1):143–68Google Scholar
  15. 15.
    August E, Parker KH, Barahona M (2007) A dynamical model of lipoprotein metabolism. Bull Math Biol 69:1233–1254PubMedCrossRefGoogle Scholar
  16. 16.
    Hafner M, Koeppl H, Hasler M, Wagner A (2009) ‘Glocal’ robustness analysis and model discrimination for circadian oscillators. PLoS Comput Biol 5:e1000534PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zamora-Sillero E, Hafner M, Ibig A, Stelling J, Wagner A (2011) Efficient characterization of high-dimensional parameter spaces for systems biology. BMC Syst Biol 5:142PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Vempala S (2005) Geometric random walks: a survey. Comput Geom 52:573–612Google Scholar
  19. 19.
    Hatzimanikatis V, Bailey JE (1996) MCA has more to say. J Theor Biol 182:233–242PubMedCrossRefGoogle Scholar
  20. 20.
    Ingalls BP, Sauro HM (2003) Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J Theor Biol 222:23–36PubMedCrossRefGoogle Scholar
  21. 21.
    Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci USA 102:3581–3586Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.ETH Zurich and IBM Research LaboratoryZurichSwitzerland
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.F. Hoffmann-La RocheBaselSwitzerland

Personalised recommendations