Skip to main content

Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching

  • Chapter
  • First Online:
Book cover Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

This chapter will review the recent results in the field of carotenoid photophysics and relate excited-state properties of carotenoids to their potential roles in the dissipation of the singlet-excited state of chlorophyll a resulting in non-photochemical quenching (NPQ) of chlorophyll fluorescence. Investigations into the structure and dynamics of excited states of carotenoids have revealed potential mechanisms regarding the involvement of spectroscopically forbidden “dark” excited states in carotenoid relaxation pathways. The generally accepted model for deactivation of excited states of carotenoids following photo-excitation invokes three states, the ground state S0, the first excited state S1, considered “dark” because the S0→S1 transition is forbidden by symmetry, and the second excited state S2, where the S0→S2 transition is strongly allowed. In addition to these states, a number of other excited states have been proposed to be involved in carotenoid de-excitation on the basis of theoretical computations and ultrafast spectroscopy. Yet, the properties of these additional states, and even their very existence, are still being questioned. We will describe the current state of knowledge regarding energetics and dynamics of carotenoid excited states and molecular factors that control these properties, which include the π-electron conjugated chain length, various attached functional groups, configuration and conformation of the molecules, and, perhaps most importantly, carotenoid interaction with the local environment. Many of these factors tune the excited-state spectra and dynamics of carotenoids, and there is accumulating evidence that they are crucial for carotenoid function in photosynthetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A –:

Antheraxanthin;

Ag, Bu, C2h –:

Classifications of molecular symmetry;

Chl –:

Chlorophyll;

Chl a – :

Chlorophyll a;

Chl b – :

Chlorophyll b;

CP24, CP26, CP29 –:

Core light-harvesting proteins of photosystem II;

D0, D1, D2, – :

Doublet states;

ESA –:

Excited-state absorption;

GSB –:

Ground state bleaching;

hECN –:

Hydroxyechinenone;

HOMO –:

Highest occupied molecular orbital;

IR –:

Infrared;

LH –:

Light harvesting complex of purple bacteria;

LHCII –:

Major light-harvesting complex of plants and algae;

LUMO –:

Lowest unoccupied molecular orbital;

n – :

Refractive index of a solvent;

N –:

Conjugation length;

Neff – :

Effective conjugation length;

NPQ –:

Non-photochemical quenching of chlorophyll fluorescence;

OCP –:

Orange carotenoid protein;

Qy – :

The lowest energy state of Chl a;

R(n) –:

Solvent polarizability;

S0, S1 and S2 – :

Singlet states;

SE –:

Stimulated emission;

V –:

Violaxanthin;

Z –:

Zeaxanthin;

ε –:

Molar extinction coefficient

References

  • Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    Article  CAS  PubMed  Google Scholar 

  • Amarie S, Wilk L, Barros T, Kühlbrandt W, Dreuw A, Wachtveitl J (2009) Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29. Biochim Biophys Acta 1787:747–752

    Article  CAS  PubMed  Google Scholar 

  • Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR (2008) Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J Biol Chem 283:3550–3558

    Article  CAS  PubMed  Google Scholar 

  • Billsten HH, Zigmantas D, Sundström V, Polívka T (2002) Dynamics of vibrational relaxation in the S1 state of carotenoids having 11 conjugated C = C bonds. Chem Phys Lett 355:465–470

    Article  Google Scholar 

  • Billsten HH, Bhosale P, Yemelyanov A, Bernstein PS, Polívka T (2003) Photophysical properties of xanthophylls in carotenoproteins from human retina. Photochem Photobiol 78:138–145

    Article  CAS  PubMed  Google Scholar 

  • Billsten HH, Pan J, Sinha S, Pascher T, Sundström V, Polívka T (2005) Excited-state processes in the carotenoid zeaxanthin after excess energy excitation. J Phys Chem A 109:6852–6859

    Article  CAS  PubMed  Google Scholar 

  • Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci USA 106:12311–12316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, Volume 1B: Spectroscopy, pp 13. Birkhäuser Verlag, Basel

    Google Scholar 

  • Cerezo J, Zuniga J, Bastida A, Requena A, Ceron-Carrasco JP, Eriksson LA (2012) Antioxidant properties of β-carotene isomers and their role in photosystems: insights from ab initio simulations. J Phys Chem A 116:3498–3506

    Article  CAS  PubMed  Google Scholar 

  • Chábera P, Fuciman M, Hříbek P, Polívka T (2009) Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids. Phys Chem Chem Phys 11:8795–8803

    Article  PubMed  Google Scholar 

  • Christensen RL, Kohler BE (1973) Low resolution optical spectroscopy of retinyl polyenes – electronic levels and spectral broadness. Photochem Photobiol 18:293–301

    Article  CAS  Google Scholar 

  • Christensen RL, Faksh A, Meyers JA, Samuel IDW, Wood P, Schrock RR, Hultzsch KC (2004) Optical spectroscopy of long polyenes. J Phys Chem A 109:8229–8236

    Article  Google Scholar 

  • Christensen RL, Enriquez MM, Wagner NL, Peacock-Villada AY, Scriban C, Schrock RR, Polívka T, Frank HA, Birge RR (2013) Energetics and dynamics of the low-lying electronic states of constrained polyenes: Implications for infinite polyenes. J Phys Chem A 117:1449–1465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chynwat V, Frank HA (1996) The application of the energy gap law to the S1 energies and dynamics of carotenoids. Chem Phys 194:237–244

    Article  Google Scholar 

  • Cong H, Niedzwiedzki DM, Gibson GN, Frank HA (2008) Ultrafast time-resolved spectroscopy of xanthophylls at low temperature. J Phys Chem B 112:3558–3567

    Article  CAS  PubMed  Google Scholar 

  • Croce R, Cinque G, Holzwarth AR, Bassi R (2000) The Soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants. Photosynth Res 64:221–231

    Article  CAS  PubMed  Google Scholar 

  • Demmig B, Winter K, Krueger A, Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves – a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dreuw A (2006) Influence of geometry relaxation on the energies of the S1 and S2 states of violaxanthin, zeaxanthin, and lutein. J Phys Chem A 110:4592–4599

    Article  CAS  PubMed  Google Scholar 

  • Dreuw A, Wormit M (2008) Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching. J Inorg Biochem 102:458–465

    Article  CAS  PubMed  Google Scholar 

  • Dreuw A, Fleming GR, Head-Gordon M (2003) Charge-transfer state as a possible signature of a zeaxanthin-chlorophyll dimer in the non-photochemical quenching process in green plants. J Phys Chem B 107:6500–6503

    Article  CAS  Google Scholar 

  • Duffy CDP, Johnson MP, Macernis M, Valkunas L, Barford W, Ruban AV (2010) A theoretical investigation of the photophysical consequences of major plant light-harvesting complex aggregation within the photosynthetic membrane. J Phys Chem B 114:15244–15253

    Article  CAS  PubMed  Google Scholar 

  • Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164

    Article  CAS  Google Scholar 

  • Enriquez MM, LaFountain AM, Budarz J, Fuciman M, Gibson GN, Frank HA (2010) Direct determination of the excited state energies of the xanthophylls diadinoxanthin and diatoxanthin from Phaeodactylum tricornutum. Chem Phys Lett 493:353–357

    Article  CAS  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Desamero RZB, Chynwat V, Gebhard R, van der Hoef I, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR (1997) Spectroscopic properties of spheroidene analogs having different extents of pi-electron conjugation. J Phys Chem A 101:149–157

    Article  CAS  Google Scholar 

  • Frank HA, Bautista JA, Josue J, Pendon Z, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR (2000a) Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B 104:4569–4577

    Article  CAS  Google Scholar 

  • Frank HA, Bautista JA, Josue JS, Young AJ (2000b) Mechanism of nonphotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39:2831–2837

    Article  CAS  PubMed  Google Scholar 

  • Fuciman M, Enriquez MM, Polívka T, Dall’Osto L, Bassi R, Frank HA (2012) The role of xanthophylls in light-harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes. J Phys Chem B 116:3834–3849

    Article  CAS  PubMed  Google Scholar 

  • Fujii R, Onaka K, Kuki M, Koyama Y, Watanabe Y (1998) The 2Ag - energies of all-trans-neurosporene and spheroidene as determined by fluorescence spectroscopy. Chem Phys Lett 288:847–853

    Article  CAS  Google Scholar 

  • Fuss W, Haas Y, Zilberg S (2000) Twin states and conical intersections in linear polyenes. Chem Phys 259:273–295

    Article  CAS  Google Scholar 

  • Galinato MGI, Niedzwiedzki D, Deal C, Birge RR, Frank HA (2007) Cation radicals of xanthophylls. Photosynth Res 94:67–78

    Article  CAS  PubMed  Google Scholar 

  • Garavelli M, Celani P, Bernardi F, Robb MA, Olivucci M (1997) Force fields for “ultrafast” photochemistry: the S2-S1-S0 reaction path for all-trans-hexa-1,3,5-triene. J Am Chem Soc 119:11487–11494

    Article  CAS  Google Scholar 

  • Gruszecki WI, Gospodarek M, Grudzinski W, Mazur R, Gieczewska K, Garstka M (2009) Light-induced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study. J Phys Chem B 113:2506–2512

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Koyama Y, Hirata Y, Mataga N (1991) S1 and T1 species of β-carotene generated by direct photoexcitation from the all-trans, 9-cis, 13-cis, and 15-cis isomers as revealed by picosecond transient absorption and transient Raman spectroscopies. J Phys Chem 95:3072–3076

    Article  CAS  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    Article  CAS  PubMed  Google Scholar 

  • Hudson B, Kohler BE, Schulten K (1982) Linear polyene electronic structure and potential surfaces. In: Lim EC (ed) Excited States. Academic, New York, pp 1–95

    Google Scholar 

  • Jeevarajan JA, Wei CC, Jeevarajan AS, Kispert LD (1996) Optical absorption spectra of dications of carotenoids. J Phys Chem 100:5637–5641

    Article  CAS  Google Scholar 

  • Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19

    Article  Google Scholar 

  • Kerfeld CA (2004) Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth Res 81:215–225

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Sawaya MR, Brahmandam V, Cascio D, Ho KK, Trevithick-Sutton CC, Krogmann DW, Yeates TO (2003) The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 11:55–65

    Article  CAS  PubMed  Google Scholar 

  • Kosumi D, Yanagi K, Fujii R, Hashimoto H, Yoshizawa M (2006) Conjugation length dependence of relaxation kinetics in beta-carotene homologs probed by femtosecond Kerr-gate fluorescence spectroscopy. Chem Phys Lett 425:66–70

    Article  CAS  Google Scholar 

  • Koyama Y, Fujii R (1999) Cis-trans carotenoids in photosynthesis: configurations, excited-state properties and physiological functions. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The Photochemistry of Carotenoids, Advances in Photosynthesis and Respiration, Volume 8. Kluwer Academic Publishers (now Springer), Dordrecht, pp 161–188

    Google Scholar 

  • Koyama Y, Takatsuka I, Nakata M, Tasumi M (1988) Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene – key bands distinguishing stretched or terminal-bent configurations from central-bent configurations. J Raman Spectrosc 19:37–49

    Article  CAS  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Macernis M, Sulskus J, Duffy CDP, Ruban AV, Valkunas L (2012) Electronic spectra of structurally deformed lutein. J Phys Chem A 116:9843–9853

    Article  CAS  PubMed  Google Scholar 

  • Macpherson AN, Gillbro T (1998) Solvent dependence of the ultrafast S2-S1 internal conversion rate of β-carotene. J Phys Chem A 102:5049–5058

    Article  CAS  Google Scholar 

  • Maiuri M, Polli D, Brida D, Luer L, LaFountain AM, Fuciman M, Cogdell RJ, Frank HA, Cerullo G (2012) Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene. Phys Chem Chem Phys 14:6312–6319

    Article  PubMed  Google Scholar 

  • Marek MS, Buckup T, Motzkus M (2011) Direct observation of a dark state in lycopene using pump-DFWM. J Phys Chem B 115:8328–8337

    Article  CAS  PubMed  Google Scholar 

  • McCamant DW, Kukura P, Mathies RA (2003) Femtosecond time-resolved stimulated Raman spectroscopy: application to the ultrafast internal conversion in β-carotene. J Phys Chem A 107:8208–8214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the Photosystem II light-harvesting complex does not involve energy transfer to carotenoids. Chemphyschem 11:1289–1296

    Article  PubMed  Google Scholar 

  • Nagae H, Kuki M, Zhang JP, Sashima T, Mukai Y, Koyama Y (2000) Vibronic coupling through the in-phase, C = C stretching mode plays a major role in the 2Ag to 1Ag internal conversion of all-trans-β-carotene. J Phys Chem A 104:4155–4166

    Article  CAS  Google Scholar 

  • Niedzwiedzki DM, Sullivan JO, Polívka T, Birge RR, Frank HA (2006) Femtosecond time-resolved transient absorption spectroscopy of xanthophylls. J Phys Chem B 110:22872–22885

    Article  CAS  PubMed  Google Scholar 

  • Niedzwiedzki DM, Sandberg DJ, Cong H, Sandberg MN, Gibson GN, Birge RR, Frank HA (2009) Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids. Chem Phys 357:4–16

    Article  CAS  Google Scholar 

  • Niedzwiedzki DM, Enriquez MM, LaFountain AM, Frank HA (2010) Ultrafast time-resolved absorption spectroscopy of geometric isomers of xanthophylls. Chem Phys 373:80–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olaizola M, LaRoche J, Kolber Z, Falkowski PG (1994) Nonphotochemical fluorescence quenching and the diadinoxanthin cycle in marine diatom. Photosynth Res 41:357–370

    Article  CAS  PubMed  Google Scholar 

  • Onaka K, Fujii R, Nagae H, Kuki M, Koyama Y, Watanabe Y (1999) The state energy and the displacements of the potential minima of the 2Ag ) state in all-trans-β-carotene as determined by fluorescence spectroscopy. Chem Phys Lett 315:75–81

    Article  CAS  Google Scholar 

  • Ostroumov E, Müller MG, Marian CM, Kleinschmidt M, Holzwarth AR (2009) Electronic coherence provides a direct proof for energy level crossing in photoexcited lutein and β-carotene. Phys Rev Lett 103:108302

    Article  PubMed  Google Scholar 

  • Papagiannakis E, Vengris M, Larsen DS, van Stokkum IHM, Hiller RG, van Grondelle R (2006) Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution. J Phys Chem B 110:512–521

    Article  CAS  PubMed  Google Scholar 

  • Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states – from solution to natural and artificial systems. Chem Rev 104:2021–2071

    Article  PubMed  Google Scholar 

  • Polívka T, Sundström V (2009) Dark excited states of carotenoids: consensus and controversy. Chem Phys Lett 477:1–11

    Article  Google Scholar 

  • Polívka T, Herek JL, Zigmantas D, Åkerlund HE, Sundström V (1999) Direct observation of the (forbidden) S1 state in carotenoids. Proc Natl Acad Sci USA 96:4914–4917

    Article  PubMed Central  PubMed  Google Scholar 

  • Polívka T, Zigmantas D, Frank HA, Bautista JA, Herek JL, Koyama Y, Fujii R, Sundström V (2001) Near-infrared time-resolved study of the S1 state dynamics of the carotenoid spheroidene. J Phys Chem B 105:1072–1080

    Article  Google Scholar 

  • Polívka T, Zigmantas D, Herek JL, He Z, Pascher T, Pullerits T, Cogdell RJ, Frank HA, Sundström V (2002a) The carotenoid S1 state in LH2 complexes from purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila: S1 energies, dynamics, and carotenoid radical formation. J Phys Chem B 106:11016–11025

    Article  Google Scholar 

  • Polívka T, Zigmantas D, Sundström V, Formaggio E, Cinque G, Bassi R (2002b) Carotenoid S1 state in a recombinant light-harvesting complex of photosystem II. Biochemistry 41:439–450

    Article  PubMed  Google Scholar 

  • Polívka T, Kerfeld CA, Pascher T, Sundström V (2005) Spectroscopic properties of the carotenoid 3 ′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry 44:3994–4003

    Article  PubMed  Google Scholar 

  • Polívka T, Balashov SP, Chábera P, Imasheva ES, Yartsev A, Sundström V, Lanyi JK (2009) Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys J 96:2268–2277

    Article  PubMed Central  PubMed  Google Scholar 

  • Ricci M, Bradforth SE, Jimenez R, Fleming GR (1996) Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH1 and LH2 light-harvesting complexes. Chem Phys Lett 259:381–390

    Article  CAS  Google Scholar 

  • Rimai L, Heyde ME, Gill D (1973) Vibrational spectra of some carotenoids and related linear polyenes – Raman spectroscopic study. J Am Chem Soc 95:4493–4501

    Article  CAS  PubMed  Google Scholar 

  • Robert B (1999) The electronic structure, stereochemistry and resonance Raman spectroscopy of carotenoids. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The Photochemistry of Carotenoids, Advances in Photosynthesis and Respiration, Volume 8. Kluwer Academic Publishers (now Springer), Dordrecht, pp 189–201

    Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    Article  CAS  PubMed  Google Scholar 

  • Sashima T, Shiba M, Hashimoto H, Nagae H, Koyama Y (1998) The 2Ag energy of crystalline all-trans-spheroidene as determined by resonance-Raman excitation profiles. Chem Phys Lett 290:36–42

    Article  CAS  Google Scholar 

  • Sashima T, Nagae H, Kuki M, Koyama Y (1999) A new singlet-excited state of all-trans-spheroidene as detected by resonance-Raman excitation profiles. Chem Phys Lett 299:187–194

    Article  CAS  Google Scholar 

  • Schulten K, Karplus M (1972) Origin of a low-lying forbidden transition in polyenes and related molecules. Chem Phys Lett 14:305–309

    Article  CAS  Google Scholar 

  • Tavan P, Schulten K (1987) Electronic excitations in finite and infinite polyenes. Phys Rev B 36:4337–4358

    Article  CAS  Google Scholar 

  • Thrash RJ, Fang HLB, LeRoi GE (1977) Raman excitation profile spectrum of β-carotene in pre-resonance region – evidence for a low-lying singlet state. J Chem Phys 67:5930–5933

    Article  CAS  Google Scholar 

  • Walla PJ, Yom J, Krueger BP, Fleming GR (2000) Two-photon excitation spectrum of light-harvesting complex II and fluorescence up-conversion after one- and two-photon excitation of the carotenoids. J Phys Chem B 104:4799–4806

    Article  CAS  Google Scholar 

  • Walla PJ, Linden PA, Ohta K, Fleming GR (2002) Excited-state kinetics of the carotenoid S1 state in LHC II and two-photon excitation spectra of lutein and β-carotene in solution: efficient car S1 to Chl electronic energy transfer via hot S1 states? J Phys Chem A 106:1909–1916

    Article  CAS  Google Scholar 

  • Wang C, Berg CJ, Hsu CC, Merrill BA, Tauber MJ (2012) Characterization of carotenoid aggregates by steady-state optical spectroscopy. J Phys Chem B 116:10617–10630

    Article  CAS  PubMed  Google Scholar 

  • Wasielewski MR, Kispert LD (1986) Direct measurement of the lowest excited singlet state lifetime of all-trans-β-carotene and related carotenoids. Chem Phys Lett 128:238–243

    Article  CAS  Google Scholar 

  • Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundström V, Polívka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6:3009–3016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TP thanks the Grant Agency of the Czech Republic (P501/12/G055) for financial support. Work in the laboratory of HAF was supported by grants from the National Science Foundation (MCB-0913022 and MCB-1243565) and the University of Connecticut Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Polívka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Polívka, T., Frank, H.A. (2014). Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_8

Download citation

Publish with us

Policies and ethics