Skip to main content

Control of Non-Photochemical Exciton Quenching by the Proton Circuit of Photosynthesis

  • Chapter
  • First Online:
Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

This chapter discusses our current understanding of the chloroplast proton circuit, i.e., those reactions that involve the storage and utilization of light energy in the transfer of protons, and its importance for regulating photosynthetic light-capture/electron-transfer reactions. The photosynthetic machinery of plants is finely tuned to balance the needs for efficient light capture with an avoidance of photodamage by regulating the capture of light energy, via thermal dissipation of excess excitation energy (assessed from non-photochemical quenching, NPQ, of chlorophyll fluorescence) by regulating light-driven electron transfer processes. In addition to driving ATP synthesis at the chloroplast ATP synthase, the thylakoid electrochemical gradient of protons or proton-motive force (pmf) plays a central role in regulating NPQ. The transthylakoid proton concentration gradient (ΔpH) component of pmf triggers the “energy-dependent”, or qE component of NPQ, which protects photosystem II from photodamage and regulates electron transfer through the cytochrome b 6 f complex, thereby preventing damage to photosystem I. The extent and mode of storage in ΔpH and ΔΨ of pmf are regulated by several processes that respond to the metabolic, or physiological, state of the organism. The extent of pmf is determined by proton influx (via linear and alternative electron flows) into the thylakoid lumen, and proton efflux through the chloroplast ATP synthase. Both processes are modulated by, or responsive to, environmental conditions and resulting metabolic fluctuations. Proton influx is controlled by linear electron flow and a series of alternative electron flow pathways, possibly including cyclic electron flow around photosystem I, the Mehler peroxidase reaction (or water-water cycle), and oxidation of plastoquinol by the plastid terminal oxidase. The fraction of pmf stored as ΔpH is also regulated by plastidic ionic strength or luminal buffering capacity, altering the sensitivity of pH-dependent processes to pmf. The integrated regulation of these processes is an open, active area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX –:

Ascorbate peroxidase;

AsA –:

Ascorbate (ascorbic acid);

CEF –:

Cyclic electron flow around photosystem I;

Fd –:

Ferredoxin;

FNR –:

Ferredoxin NADP+ reductase;

FQR –:

Ferredoxin:quinone reductase;

LEF –:

Linear electron flow;

MDA –:

Monodehydroascorbate;

MDH –:

NADP malic enzyme;

MPR –:

Mehler peroxidase reaction;

NDA2 –:

Type II NADH:plastoquinone oxidoreductase;

NDH –:

NADPH:plastoquinone oxidoreductase;

NPQ –:

Non-photochemical quenching (of chlorophyll fluorescence);

PGR5 –:

Proton gradient regulation 5;

PGRL1 –:

PGR5-Like protein;

pmf – :

Proton motive force;

PQR –:

Plastoquinone reductase;

PS I –:

Photosystem I;

PS II –:

Photosystem II;

PTOX –:

Plastid terminal oxidase;

qE –:

‘Energy dependent’ quenching;

ROS –:

Reactive oxygen species;

SOD –:

Superoxide dismutase

References

  • Adams WW III, Demmig-Adams B, Logan BA, Barker DH, Osmond CB (1999) Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. Plant Cell Environ 22:125–136

    CAS  Google Scholar 

  • Allahverdiyeva Y, Aro E-M (2012) Photosynthetic responses of plants to excess light: mechanisms and conditions for photoinhibition, excess energy dissipation and repair. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: Plastid Biology, Energy Conversion, and Carbon Assimilation. Advances in Photosynthesis and Respiration, Volume 34. Springer, Dordrecht, pp 275–297

    Google Scholar 

  • Allen J (2002) Photosynthesis of ATP – electrons, proton pumps, rotors, and poise. Cell 110:273–276

    CAS  PubMed  Google Scholar 

  • Aluru MR, Yu F, Fu A, Rodermel S (2006) Arabidopsis variegation mutants: new insights into chloroplast biogenesis. J Exp Bot 57:1871–1881

    CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  PubMed  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans R Soc B 355:1419–1431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avenson T, Cruz JA, Kramer D (2004) Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc Natl Acad Sci USA 101:5530–5535

    Google Scholar 

  • Avenson TJ, Cruz JA, Kanazawa A, Kramer DM (2005a) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 102:9709–9713

    Google Scholar 

  • Avenson TJ, Kanazawa A, Cruz JA, Takizawa K, Ettinger WE, Kramer DM (2005b) Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ 28:97–109

    CAS  Google Scholar 

  • Backhausen JE, Kitzmann C, Scheibe R (1994) Competition between electron acceptors in photosynthesis: regulation of the malate valve during CO2 fixation and nitrite reduction. Photosynth Res 42:75–86

    CAS  PubMed  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Phil Trans R Soc B 355:1433–1446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baginsky S, Link G (2008) Redox regulation of chloroplast gene expression. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 269–287

    Google Scholar 

  • Bellafiore S, Barneche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    CAS  PubMed  Google Scholar 

  • Bendall DS, Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229:23–38

    Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Dacies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    CAS  PubMed  Google Scholar 

  • Breyton C, Nandha B, Johnson G, Joliot P, Finazzi G (2006) Redox modulation of cyclic electron flow around photosystem I in C3 plants. Biochemistry 45:13465–13475

    CAS  PubMed  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2006) Understanding the cytochrome bc complexes by what they don’t do. The Q-cycle at 30. Trends Plant Sci 11:46–55

    CAS  PubMed  Google Scholar 

  • Cardol P, Alric J, Girard-Bascou J, Franck F, Wollman FA, Finazzi G (2009) Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc Natl Acad Sci USA 106:15979–15984

    Google Scholar 

  • Carraretto L, Formentin E, Teardo E, Checchetto V, Tomizioli M, Morosinotto T, Glacometti GM, Finazzi G, Szabó I (2013) A thylakoid-located two-pore potassium channel controls photosynthetic light utilization in plants. Science 342:114–118

    CAS  PubMed  Google Scholar 

  • Casano LM, Martín M, Sabater B (2001) Hydrogen peroxide mediates the induction of chloroplastic Ndh complex under photooxidative stress in barley. Plant Physiol 125:1450–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casano LM, Lascano HR, Martin M, Sabater B (2004) Topology of the plastid Ndh complex and its NDH-F subunit in thylakoid membranes. Biochem J 15:145–155

    Google Scholar 

  • Checchetto V, Segalla A, Allorent G, La Roca N, Leanza L, Giacometti GM, Uozumi N, Finazzi G, Bergantino E, Szabo I (2012) Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proc Natl Acad Sci USA 109:11043–11048

    Google Scholar 

  • Clarke JE, Johnson GN (2001) In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 212:808–816

    CAS  PubMed  Google Scholar 

  • Cleland RE, Bendall DS (1992) Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity. Photosynth Res 34:409–418

    CAS  PubMed  Google Scholar 

  • Cooley JW, Nitschke W, Kramer DM (2008) The cytochrome bc 1 and related bc complexes, the Rieske/cytochrome b complex as the functional core of a central electron/proton transfer complex. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The Purple Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, Volume 28. Springer, Dordrecht, pp 451–473

    Google Scholar 

  • Cournac G, Baker NR (2012) Electron transport in leaves: a physiological perspective. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: Plastid Biology, Energy Conversion, and Carbon Assimilation. Advances in Photosynthesis and Respiration, Volume 34. Springer, Dordrecht, pp 591–605

    Google Scholar 

  • Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: a structure perspective. Biochim Biophys Acta 1807:788–802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (ΔΨ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into ΔΨ and ΔpH by ionic strength. Biochemistry 40:1226–1237

    CAS  PubMed  Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406

    CAS  PubMed  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    CAS  PubMed  Google Scholar 

  • de Boer AH (2002) Plant 14-3-3 proteins assist ion channels and pumps. Biochem Soc Trans 30:416–421

    PubMed  Google Scholar 

  • del Riego G, Casano LM, Martin M, Sabater B (2006) Multiple phosphorylation sites in the β subunit of thylakoid ATP synthase. Photosynth Res 89:11–18

    CAS  PubMed  Google Scholar 

  • Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta 1273:150–158

    Google Scholar 

  • Demmig-Adams B, Ebbert V, Zarter CR, Adams WW III (2006) Characteristics and species-dependent employment of flexible versus sustained thermal dissipation and photoinhibition. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 39–48

    Google Scholar 

  • Depège N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    PubMed  Google Scholar 

  • Desplats C, Mus F, Cuine S, Billon E, Cournac L, Peltier G (2009) Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J Biol Chem 284:4148–4157

    CAS  PubMed  Google Scholar 

  • Driever SM, Baker NR (2011) The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. Plant Cell Environ 34:837–846

    CAS  PubMed  Google Scholar 

  • Ducruet JM, Roman M, Havaux M, Janda T, Gallais A (2005) Cyclic electron flow around PSI monitored by afterglow luminescence in leaves of maize inbred lines (Zea mays L.): correlation with chilling tolerance. Planta 221:567–579

    CAS  PubMed  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dyanamics of photosynthesis. Annu Rev Genet 42:463–515

    CAS  PubMed  Google Scholar 

  • Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476:414–420

    CAS  PubMed  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    CAS  PubMed  Google Scholar 

  • Endo T, Shikanai T, Sato F, Asada K (1998) NAD(P)H dehydrogenase dependent, antimycin A-sensitive electron donation to plastoquinone in tobacco chloroplasts. Plant Cell Physiol 39:1226–1231

    CAS  Google Scholar 

  • Enz C, Steinkamp T, Wagner R (1993) Ion channels in the thylakoid membrane (a patch-clamp study). Biochim Biophys Acta 111:365–375

    Google Scholar 

  • Eskling M, Emanuelsson A, Åkerlund HE (2001) Enzymes and mechanisms for violaxanthin-zeaxanthin conversion. In: Aro E-M, Andersson B (eds) Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 11. Kluwer (now Springer), Dordrecht, pp 433–452

    Google Scholar 

  • Fan DY, Nie Q, Hope AB, Hillier W, Pogson BJ, Chow WS (2007) Quantification of cyclic electron flow around photosystem I in spinach leaves during photosynthetic induction. Photosynth Res 94:347–357

    CAS  PubMed  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Zito F, Bonente G, Bassi R, Wollman F (2006) Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 45:1490–1498

    CAS  PubMed  Google Scholar 

  • Fridlyand LE, Backhausen JE, Scheibe R (1998) Flux control of the malate valve in leaf cells. Arch Biochem Biophys 349:290–298

    CAS  PubMed  Google Scholar 

  • Gambarova NG (2008) Activity of photochemical reactions and accumulation of hydrogen peroxide in chloroplasts under stress conditions. Russ Agric Sci 34:149–151

    Google Scholar 

  • Golding AJ, Finazzi G, Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants-evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220:356–363

    CAS  PubMed  Google Scholar 

  • Gotoh E, Matsumoto M, Ogawa K, Kobayashi Y, Tsuyama M (2010) A qualitative analysis of the regulation of cyclic electron flow around photosystem I from the post-illumination chlorophyll fluorescence transient in Arabidopsis: a new platform for the in vivo investigation of the chloroplast redox state. Photosynth Res 103:111–123

    CAS  PubMed  Google Scholar 

  • Hambourger M, Moore GF, Kramer DM, Gust D, Moore AL, Moore TA (2009) Biology and technology for photochemical fuel production. Chem Soc Rev 38:25–35

    CAS  PubMed  Google Scholar 

  • Harbinson J (2012) Modeling the protection of photosynthesis. Proc Natl Acad Sci USA 109:15533–15534

    Google Scholar 

  • Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90:1029–1034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasan SS, Yamashita E, Baniulis D, Cramer WA (2013) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b 6 f complex. Proc Natl Acad Sci USA 110:4297–4302

    Google Scholar 

  • Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjärvi S, Aro E-M, Oelze ML, Dietz KJ, Nunes-Nesi A, Do PT, Fernie AR, Talla SK, Raghavendra AS, Linke V, Scheibe R (2012) Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. J Exp Bot 63:1445–1459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73:223–231

    CAS  PubMed  Google Scholar 

  • Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D (2012) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523

    Google Scholar 

  • Hosler JP, Yocum CF (1987) Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport: effect of DCMU and the NADPH/NADP ratio. Plant Physiol 83:965–969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horváth EM, Peter SO, Joët T, Rumeau D, Cournac L, Horváth GV, Kavanagh TA, Schäfer C, Peltier G, Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1350

    PubMed Central  PubMed  Google Scholar 

  • Huang G, Ma S, Bai L, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    PubMed  Google Scholar 

  • Huber SC (2007) Exploring the role of protein phosphorylation in plants: from signalling to metabolism. Biochem Soc Trans 35:28–32

    CAS  PubMed  Google Scholar 

  • Ioannidis NE, Cruz JA, Katzabasis K, Kramer DM (2012) Evidence that putricine modulates the higher plant photosynthetic proton circuit. PLoS One 7:e29864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    CAS  PubMed  Google Scholar 

  • Jans F, Mignolet E, Houyoux PA, Cardol P, Ghysels B, Cuiné S, Cournac L, Peltier G, Remacle C, Franck F (2008) A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci USA 105:20546–20551

    Google Scholar 

  • Jia H, Oguchi R, Hope AB, Barber J, Chow WS (2008) Differential effects of severe water stress on linear and cyclic electron fluxes through phtosystem I in spinach leaf discs in CO2-enriched air. Planta 228:803–812

    CAS  PubMed  Google Scholar 

  • Joët T, Genty B, Josse EM, Kuntz M, Cournac L, Peltier G (2002a) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277:31623–31630

    PubMed  Google Scholar 

  • Joët T, Cournac L, Peltier G, Havaux M (2002b) Cyclic electron flow around photosystem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol 128:760–769

    PubMed Central  PubMed  Google Scholar 

  • Johnson GN (2010) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:384–389

    PubMed  Google Scholar 

  • Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA 108:13317–13322

    Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99:10209–10214

    Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    CAS  PubMed  Google Scholar 

  • Joliot P, Beal D, Joliot A (2004) Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves. Biochim Biophys Acta 1656:166–176

    CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A, Johnson G (2006) Cyclic electron transfer around photosystem I. In: Golbeck JH (ed) Photosystem I: The Light Driven Plastocyanin: Ferredoxin Oxioreductase. Advances in Photosynthesis and Respiration, Volume 24. Springer, Dordrecht, pp 639–656

    Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145:377–382

    CAS  PubMed  Google Scholar 

  • Kanazawa A, Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci USA 99:12789–12794

    Google Scholar 

  • Kar RK (2011) Plant responses to water stress: role of reactive oxygen species. Plant Signal Behav 6:1741–1745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiirats O, Cruz JA, Edwards GE, Kramer DM (2009) Feedback limitation of photosynthesis at high CO2 acts by modulating the activity of the chloroplast ATP synthase. Funct Plant Biol 36:893–901

    CAS  Google Scholar 

  • Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage Y, Yokota A, Kramer DM (2009) The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ 32:209–219

    CAS  PubMed  Google Scholar 

  • Kohzuma K, Dal Bosco C, Meurer J, Kramer DM (2013) Light- and metabolism-related regulation of the chlroplast ATP synthase have distinct mechanisms and functions. J Biol Chem 288:13156–13163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer D, Crofts A (1989) Activation of the chloroplast ATPase measured by the electrochromic change in leaves of intact plants. Biochim Biophys Acta 976:28–41

    CAS  Google Scholar 

  • Kramer DM, Crofts AR (1996) Control of photosynthesis and measurement of photosynthetic reactions in intact plants. In: Baker N (ed) Photosynthesis and the Environment. Advances in Photosynthesis, Volume 5. Kluwer Academic Publishers (now Springer), Dordrecht, pp 25–66

    Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer DM, Wise RR, Frederick JR, Alm DM, Hesketh JD, Ort DR, Crofts AR (1990) Regulation of coupling factor in field-grown sunflower: a redox model relating coupling factor activity to the activities of other thioredoxin-dependent chloroplast enzymes. Photosynth Res 26:213–222

    CAS  PubMed  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    CAS  Google Scholar 

  • Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32

    CAS  PubMed  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    CAS  PubMed  Google Scholar 

  • Krieger A, Weis E (1993) The role of calcium in the pH-dependent control of photosystem II. Photosynth Res 37:117–130

    CAS  PubMed  Google Scholar 

  • Kubicki A, Funk E, Westhoff P, Steinmueller K (1996) Differential expression of plastome-encoded ndh genes in mesophyll and bundle-sheath chloroplasts of the C4 plant Sorghum bicolor indicates that the complex I-homologous NAD(P)H-plastoquinone oxioreductase in involved in cyclic electron transport. Planta 199:276–28

    CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R (2007) Rates and roles of cyclic and atlternative electron flow in potato leaves. Plant Cell Physiol 48:1575–1588

    CAS  PubMed  Google Scholar 

  • Lascano HR, Casano LM, Martin M, Sabater B (2003) The activity of the chloroplastic Ndh complex is regulated by phosphorylation of the NDH-F subunit. Plant Physiol 132:256–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laureau C, De Paepe R, Latouche G, Moreno-Chacón M, Finazzi G, Kuntz M, Cornic G, Streb P (2013) Plastid terminal oxidase (PTOX) has the potential to act as a saftey valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. Plant Cell Environ 36:1296–1310

    CAS  Google Scholar 

  • Li X-P, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer DM, Niyogi KK (2004a) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    CAS  PubMed  Google Scholar 

  • Li XG, Duan W, Meng Q, Zou Q, Zhao S (2004b) The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. Plant Cell Physiol 45:103–108

    CAS  PubMed  Google Scholar 

  • Lilley RM, Fitzgerald MP, Rienits KG, Walker DA (1975) Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. New Phytol 75:1–7

    CAS  Google Scholar 

  • Livingston AK (2010) Redefining Cyclic Electron Flow Around Photosystem I (CEF1): The Induction, Pathway, and Role of CEF1 in C3 Plants. Ph.D. Thesis. Washington State University. ProQuest Dissertations and Theses Accession No. 759377145

    Google Scholar 

  • Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010a) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Livingston AK, Kanazawa A, Cruz JA, Kramer DM (2010b) Regulation of cyclic electron flow in C3 plants: differential effects of limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/oxygenase and glyceraldehyde-3-phosphate dehydrogenase. Plant Cell Environ 33:1779–1788

    CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    CAS  PubMed  Google Scholar 

  • Lucker BF, Kramer DM (2013) Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth Res 117:449–459

    CAS  PubMed  Google Scholar 

  • Maiwald D, Dietzmann A, Jahns P, Pesaresi P, Joliot P, Joliot A, Levin JZ, Salamini F, Leister D (2003) Knock-out of the genes coding for the Rieske protein and the ATP-synthase δ-subunit of Arabidopsis. Effects on photosynthesis, thylakoid protein composition, and nuclear chloroplast gene expression. Plant Physiol 133:191–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makino A, Miyake C, Yokota A (2002) Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. Plant Cell Physiol 43:1017–1026

    CAS  PubMed  Google Scholar 

  • Martin M, Sabater B (2010) Plastid ndh genes in plant evolution. Plant Physiol Biochem 48:636–645

    CAS  PubMed  Google Scholar 

  • Maul JE, Lilly JW, Cui L, dePanphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome. Plant Cell 14:2659–2679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melis A (1996) Excitation energy transfer: functional and dynamic aspects of Lhc (cab) proteins. In: Ort DR, Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis, Volume 4. Kluwer Academic Publishers (now Springer), Dordrecht, pp 523–538

    Google Scholar 

  • Mignolet E, Lecler R, Ghysels B, Remacle C, Franck F (2012) Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H2 photoproduction in sulphur-deprived Chlamydomonas reinhardtii. J Biotechnol 162:81–88

    CAS  PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    PubMed Central  PubMed  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    CAS  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nedbal L, Červený J, Schmidt H (2009) Scaling and integration of kinetic models of photosynthesis: towards comprehensive E-photosynthesis. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Advances in Photosynthesis and Respiration, Volume 29. Springer, Dordrecht, pp 17–29

    Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics, Volume 3. Academic Press, London, pp 57–87

    Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    CAS  PubMed  Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis. Curr Opin Plant Biol 5:193–198

    CAS  PubMed  Google Scholar 

  • Ort DR, Oxborough K (1992) In situ regulation of chloroplast coupling factor activity. Annu Rev Plant Physiol Plant Mol Biol 43:269–912

    CAS  Google Scholar 

  • Ort DR, Yocum CF (1996) Electron transfer and energy transduction in photosynthesis: an overview. In: Ort DR, Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis, Volume 4. Kluwer Academic Publishers (now Springer), Dordrecht, pp 1–9

    Google Scholar 

  • Osmond CB, Förster B (2008) Photoinhibition: then and now. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 11–22

    Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    CAS  PubMed  Google Scholar 

  • Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T (2009) Efficient operation of the NAD(P)H dehydrogenase requires a supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21:3623–3640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    CAS  PubMed  Google Scholar 

  • Pottosin II, Schönknecht G (1996) Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J Membr Biol 152:223–233

    CAS  PubMed  Google Scholar 

  • Proctor MCF, Smirnoff N (2011) Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching? Physiol Plant 141:130–140

    CAS  PubMed  Google Scholar 

  • Reiland S, Messerli G, Baerenfaller K, Gerrits H, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson JM (1988) Does O2 photoreduction occur within chloroplasts in vivo? Physiol Plant 72:666–680

    CAS  Google Scholar 

  • Rubin A, Riznichenko G (2009) Modeling of the primary processes in a photosynthetic membrane. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Advances in Photosynthesis and Respiration, Volume 29. Springer, Dordrecht, pp 151–176

    Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    CAS  PubMed  Google Scholar 

  • Ruuska SA, Badger MR, Andrews TJ, von Caemmerer S (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J Exp Bot 51:357–368

    CAS  PubMed  Google Scholar 

  • Sarvikas P, Hakala M, Pätsikkä E, Tyystjärvi T, Tyystjärvi E (2006) Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Plant Cell Physiol 47(3):391–400

    CAS  PubMed  Google Scholar 

  • Sazanov L, Burrows PA, Nixon PJ (1998) The plastid ndh genes code for a NADH-specific dehydrogenase: purification and characterization of a mitochondrial-like complex I from pea thylakoid membranes. Proc Natl Acad Sci USA 95:1319–1324

    Google Scholar 

  • Scheibe R (2004) Malate valve to balance cellular energy supply. Physiol Plant 120:21–26

    CAS  PubMed  Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489

    CAS  PubMed  Google Scholar 

  • Scheller HV (1996) In vitro cyclic electron transport in barley thylakoids follows two independent pathways. Plant Physiol 110:187–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schönknecht G, Hedrich R, Junge W, Raschke K (1998) A voltage dependent chloride channel in the photosynthetic membrane of a higher plant. Nature 336:589–592

    Google Scholar 

  • Schreiber U, Klughammer C (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+ absorbance changes at 830 nm. Planta 192:261–268

    Google Scholar 

  • Sharkey TD (1990) Feedback limitation of photosynthesis and the physiological role of ribulose bisphosphate carboxylase carbamylation. Bot Mag Tokyo 2:87–105

    Google Scholar 

  • Shikanai T (2010) Regulation of photosynthetic electron transport. In: Rebeiz CA, Benning C, Bohnert HJ, Daniell H, Hoober JK, Lichtenthaler HK, Portis AR, Tripathy BC (eds) Chloroplast: Basics and Applications. Advances in Photosynthesis and Respiration, Volume 31. Springer, Dordrecht, pp 347–362

    Google Scholar 

  • Stitt M, Lilley RM, Heldt HW (1982) Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts. Plant Physiol 70:971–977

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suorsa M, Sirpiö S, Aro E-M (2009) Towards characterization of the chloroplast NAD(P)H dehydrogenase complex. Mol Plant 2:1127–1140

    CAS  PubMed  Google Scholar 

  • Suorsa M, Järvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjärvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro E-M (2012) Proton Gradient Regulation 5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:2934–2948

    Google Scholar 

  • Takabayashi A, Kishine M, Asada K, Endo T, Sato F (2005) Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc Natl Acad Sci USA 102:16898–16903

    Google Scholar 

  • Takahashi H, Clowes S, Wollman F-A, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954

    PubMed Central  PubMed  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences or light-induced pmf. Biochem Biophys Acta 1767:1233–1244

    CAS  PubMed  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2008) Depletion of stromal Pi induces high ‘energy dependent’ antenna exciton quenching (qE) by decreasing proton conductivity at CF0-CF1 ATP synthase. Plant Cell Environ 31:235–243

    CAS  PubMed  Google Scholar 

  • Trouillard M, Shahbazi M, Moyet L, Rappaport F, Joliot P, Kuntz M, Finazzi G (2012) Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Biochim Biophys Acta 1817:2140–2148

    CAS  PubMed  Google Scholar 

  • Tyystjärvi E, Aro E-M (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 93:2213–2218

    Google Scholar 

  • Walters RG, Ibrahim DG, Horton P, Kruger NJ (2004) A mutant of Arabidopsis lacking the triose-phosphate/phosphate translocator reveals metabolic regulation of starch breakdown in the light. Plant Physiol 135:891–906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Ortiz-Flores G, Ortiz-Lopez A, Ort DR (2007) A point mutation in atpC1 raises the redox potential of the Arabidopsis chloroplast ATP synthase gamma-subunit regulatory disulfide above the range of thioredoxin modulation. J Biol Chem 282:36782–36789

    CAS  PubMed  Google Scholar 

  • Yin X, Harbinson J, Struik PC (2009) A model of the generalized stoichiometry of electron transport limited C3 photosynthesis: development and applications. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Advances in Photosynthesis and Respiration, Volume 29. Springer, Dordrecht, pp 247–273

    Google Scholar 

  • Zaks J, Amarnath K, Kramer DM, Niyogi KK, Fleming GR (2012) A kinetic model of rapidly reversible nonphotochemical quenching. Proc Natl Acad Sci USA 109:15757–15762

    Google Scholar 

  • Zanetti M, Teardo E, La Rocca N, Zulkifli L, Checchetto V, Shijuku T, Sato Y, Giacometti GM, Uozumi N, Bergantino E, Szabo I (2010) A novel potassium channel in photosynthetic cyanobacteria. PLoS One 5:e10118

    PubMed Central  PubMed  Google Scholar 

  • Zhang R, Cruz JA, Kramer DM, Magallanes-Lundback M, DellaPenna D, Sharkey TD (2009) Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted, intact tobacco leaves. Plant Cell Environ 32:1538–1547

    CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP (2009) Can increase in rubisco specificity increase carbon gain by whole canopy? A modeling analysis. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Advances in Photosynthesis and Respiration, Volume 29. Springer, Dordrecht, pp 401–416

    Google Scholar 

  • Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jeffrey Cruz and Dr. Nick Fisher for helpful discussions. The authors are funded by Grant DE-FG02-11ER16220 from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Strand, D.D., Kramer, D.M. (2014). Control of Non-Photochemical Exciton Quenching by the Proton Circuit of Photosynthesis. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_18

Download citation

Publish with us

Policies and ethics