Skip to main content

Structural Changes and Non-Photochemical Quenching of Chlorophyll a Fluorescence in Oxygenic Photosynthetic Organisms

  • Chapter
  • First Online:
Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

This chapter focuses on the nature, physical mechanism and physiological significance of structural changes at different levels of structural complexity of the photosynthetic apparatus of oxygenic photosynthetic organisms – with special emphasis on non-photochemical quenching (NPQ) of the singlet-excited state of chlorophyll a. The dual role of the antenna system, light harvesting under low light and thermal dissipation under high light, requires substantial structural flexibility. Indeed, reversible structural changes induced by excess-light excitation have been observed in different organisms via several techniques, including electron microscopy, light scattering measurements, circular dichroism spectroscopy, and small-angle neutron scattering. These investigations have revealed reorganizations at the level of (i) the ultrastructure of thylakoid membranes, affecting repeat distances, (ii) macro-organization of light-harvesting antenna complexes within the membrane, perturbing the ordered arrays of the complexes, as well as (iii) isolated light-harvesting antenna systems. In some cases, correlations between the observed reorganizations and NPQ have been well established. In many cases, however, the relationship between changes in the macro-organization of the light-harvesting antenna or thylakoid membranes and NPQ remains to be explored. Nevertheless, the currently available data strongly suggest that, while an overall reorganization is a necessary condition for adjusting the functional activities to different growth light intensities and for photoprotection, in particular, reorganization per se is not sufficient for NPQ (that also requires the presence of effector molecules, such as, e.g., PsbS or zeaxanthin). This chapter also deals with the effect of dissipation of excess excitation energy on the photosynthetic apparatus: light-induced reversible structural changes in different antenna systems in vivo and in vitro, with rates linearly proportional to the intensity of excess light (that is not used for photosynthesis). These structural changes have been proposed to be driven by what is termed a thermo-optic mechanism: elementary structural changes elicited by ultrafast local heat transients due to the dissipation of photon energy, a photophysical feedback mechanism that appears to modulate NPQ and regulate enzymatic functions in light-harvesting antenna complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ΔμH + – :

Electrochemical potential gradient of protons across the thylakoid membrane;

CD –:

Circular dichroism;

Chl –:

Chlorophyll;

EPR –:

Electron paramagnetic resonance;

FCP –:

Fucoxanthin–chlorophyll a/c protein;

LHCII –:

Light-harvesting complex II;

NPQ –:

Non-photochemical quenching of chlorophyll fluorescence;

OCP –:

Orange carotenoid protein;

PG –:

Phosphatidylglycerol;

PMS –:

Phenazine methosulphate;

PS I –:

Photosystem I;

PS II –:

Photosystem II;

psi –:

Polymer or salt-induced;

Q –:

Scattering vector;

qE –:

Energy-dependent quenching:

qI –:

Largely irreversible quenching originally associated with photoinhibition of PS II;

qT –:

Quenching arising from state transitions;

RD –:

Repeat distance;

SANS –:

Small-angle neutron scattering

References

  • Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2013) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117:31–44

    CAS  PubMed  Google Scholar 

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326

    CAS  PubMed  Google Scholar 

  • Anderson JM, Horton P, Kim EH, Chow WS (2012) Towards elucidation of dynamic structural changes of plant thylakoid architecture. Philos Trans R Soc Lond B Biol Sci 367:3515–3524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson B, Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593:427–440

    CAS  PubMed  Google Scholar 

  • Arntzen CJ (1978) Dynamic structural features of chloroplast lamellae. In: Sanadi DR, Vernon LP (eds) Current Topics in Bioenergetics, Volume 8. Academic, New York, pp 111–160

    Google Scholar 

  • Austin JR, Staehelin LA (2011) Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol 155:1601–1611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Annu Rev Plant Physiol 33:261–295

    CAS  Google Scholar 

  • Barros T, Kühlbrandt W (2009) Crystallisation, structure and function of plant light-harvesting complex II. Biochim Biophys Acta 1787:753–772

    CAS  PubMed  Google Scholar 

  • Barzda V, Mustárdy L, Garab G (1994) Size dependency of circular dichroism in macroaggregates of photosynthetic pigment-protein complexes. Biochemistry 33:10837–10841

    CAS  PubMed  Google Scholar 

  • Barzda V, Istokovics A, Simidjiev I, Garab G (1996) Structural flexibility of chiral macroaggregates of light-harvesting chlorophyll a/b pigment-protein complexes. Light-induced reversible structural changes associated with energy dissipation. Biochemistry 35:8981–8985

    CAS  PubMed  Google Scholar 

  • Barzda V, Jennings RC, Zucchelli G, Garab G (1999) Kinetic analysis of the light-induced fluorescence quenching in light-harvesting chlorophyll a/b pigment-protein complex of photosystem II. Photochem Photobiol 70:751–759

    CAS  Google Scholar 

  • Belgio E, Duffy CDP, Ruban AV (2013) Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Phys Chem Chem Phys 15:12253–12261

    CAS  PubMed  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    CAS  PubMed  Google Scholar 

  • Blankenship RE (2014) Molecular Mechanisms of Photosynthesis, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Boekema EJ, van Breemen JFL, van Roon H, Dekker JP (2000) Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 301:1123–1133

    CAS  PubMed  Google Scholar 

  • Caffarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy transfer and trapping in higher plant Photosystem II complexes with different antenna sizes. Biophys J 100:2094–2103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow WS, Kim EH, Horton P, Anderson JM (2005) Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem Photobiol Sci 4:1081–1090

    CAS  PubMed  Google Scholar 

  • Chuartzman SG, Nevo R, Shimoni E, Charuvi D, Kiss V, Ohad I, Brumfeld V, Reich Z (2008) Thylakoid membrane remodeling during state transitions in Arabidopsis. Plant Cell 20:1029–1039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cramer WA, Knaff DB (1990) Energy Transduction in Biological Membranes: A Textbook of Bioenergetics. Springer, Heidelberg

    Google Scholar 

  • Cseh Z, Rajagopal S, Tsonev T, Busheva M, Papp E, Garab G (2000) Thermooptic effect in chloroplast thylakoid membranes. Thermal and light stability of pigment arrays with different levels of structural complexity. Biochemistry 39:15250–15257

    CAS  PubMed  Google Scholar 

  • Cseh Z, Vianelli A, Rajagopal S, Krumova S, Kovács L, Papp E, Barzda V, Jennings R, Garab G (2005) Thermo-optically induced reorganizations in the main light harvesting antenna of plants. I. Non-arrhenius type of temperature dependence and linear light-intensity dependencies. Photosynth Res 86:263–273

    CAS  PubMed  Google Scholar 

  • Damkjaer JT, Kereiche S, Johnson MP, Kovacs L, Kiss AZ, Boekema EJ, Ruban AV, Horton P, Jansson S (2009) The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell 21:3245–3256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daum B, Nicastro D, Il JA, McIntosh JR, Kuhlbrandt W (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299–1312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    CAS  Google Scholar 

  • Dobrikova AG, Várkonyi Z, Krumova SB, Kovács L, Kostov GK, Todinova SJ, Busheva MC, Taneva SG, Garab G (2003) Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Biochemistry 42:11272–11280

    CAS  PubMed  Google Scholar 

  • Dockter C, Muller AH, Dietz C, Volkov A, Polyhach Y, Jeschke G, Paulsen H (2012) Rigid core and flexible terminus: structure of solubilized light-harvesting chlorophyll a/b complex (LHCII) measured by EPR. J Biol Chem 287:2915–2925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eaton-Rye JJ, Tripathy BC, Sharkey TD (2012) Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Advances in Photosynthesis and Respiration, Volume 34. Springer, Dordrecht

    Google Scholar 

  • Fowler CF, Kok B (1974) Direct observation of a light-induced electric field in chloroplasts. Biochim Biophys Acta 357:308–318

    CAS  PubMed  Google Scholar 

  • Garab G (1996) Linear and circular dichroism. In: Amesz J, Hoff AJ (eds) Biophysical Techniques in Photosynthesis. Advances in Photosynthesis and Respiration, Volume 3. Kluwer (now Springer), Dordrecht, pp 11–40

    Google Scholar 

  • Garab G (2014) Hierarchical organization and structural flexibility of thylakoid membranes. Biochim Biophys Acta 1837:481–494

    CAS  PubMed  Google Scholar 

  • Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garab G, Leegood RC, Walker DA, Sutherland JC, Hind G (1988) Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment–protein complex detected by circular dichroism. Biochemistry 27:2430–2434

    CAS  Google Scholar 

  • Garab G, Kieleczawa J, Sutherland JC, Bustamante C, Hind G (1991) Organization of pigment–protein complexes into macrodomains in the thylakoid membranes of wild type and chlorophyll b-less mutant of barley as revealed by circular dichroism. Photochem Photobiol 54:273–281

    CAS  Google Scholar 

  • Garab G, Istokovics A, Butiuc A, Simidjiev I, Dér A (1998) Light-induced ion movements in thylakoid membranes and isolated LHC II. In: Garab G (ed) Photosynthesis: Mechanisms and Effects. Kluwer Academic Publishers (now Springer), Dordrecht, pp 341–344

    Google Scholar 

  • Garab G, Cseh Z, Kovács L, Rajagopal S, Várkonyi Z, Wentworth M, Mustárdy L, Dér A, Ruban AV, Papp E, Holzenburg A, Horton P (2002) Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: thermo-optic mechanism. Biochemistry 41:15121–15129

    CAS  PubMed  Google Scholar 

  • Georgakopoulou S, van der Zwan G, Bassi R, van Grondelle R, van Amerongen H, Croce R (2007) Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry 46:4745–4754

    CAS  PubMed  Google Scholar 

  • Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J 69:289–301

    CAS  PubMed  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    CAS  PubMed  Google Scholar 

  • Green BR, Anderson JM, Parson WW (2003) Photosynthetic membranes and their light-harvesting antennas. In: Green BR, Parson WW (eds) Light-Harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration, Volume 13. Kluwer (now Springer) Academic Publishers, Dordrecht, pp 1–28

    Google Scholar 

  • Gruszecki WI, Gospodarek M, Grudzinski W, Mazur R, Gieczewska K, Garstka M (2009) Light-induced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study. J Phys Chem B 113:2506–2512

    CAS  PubMed  Google Scholar 

  • Gruszecki WI, Luchowski R, Zubik M, Grudzinski W, Janik E, Gospodarek M, Goc J, Gryczynski Z, Gryczynski I (2010a) Blue-light-controlled photoprotection in plants at the level of the photosynthetic antenna complex LHCII. J Plant Physiol 167:69–73

    CAS  PubMed  Google Scholar 

  • Gruszecki WI, Zubik M, Luchowski R, Janik E, Grudzinski W, Gospodarek M, Goc J, Fiedor L, Gryczynski Z, Gryczynski I (2010b) Photoprotective role of the xanthophyll cycle studied by means of modeling of xanthophyll-LHCII interactions. Chem Phys 373:122–128

    CAS  Google Scholar 

  • Gulbinas V, Karpicz R, Garab G, Valkunas L (2006) Nonequilibrium heating in LHCII complexes monitored by ultrafast absorbance transients. Biochemistry 45:9559–9565

    CAS  PubMed  Google Scholar 

  • Gussakovsky EE, Barzda V, Shahak Y, Garab G (1997) Irreversible disassembly of chiral macrodomains in thylakoids due to photoinhibition. Photosynth Res 51:119–126

    CAS  Google Scholar 

  • Hind G, Wall JS, Várkonyi Z, Istokovics A, Lambrev PH, Garab G (2014) Membrane crystals of plant light-harvesting complex II disassemble reversibly in light. Plant Cell Physiol 55:1296–1303

    Google Scholar 

  • Holm JK, Várkonyi Z, Kovács L, Posselt D, Garab G (2005) Thermooptically induced reorganizations in the main light harvesting antenna of plants. II. Indications for the role of LHCII-only macrodomains in thylakoids. Photosynth Res 86:275–282

    CAS  PubMed  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292:1–4

    CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1994) Regulation of light harvesting in green plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol 106:415–420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    CAS  PubMed  Google Scholar 

  • Horton P, Wentworth M, Ruban AV (2005) Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Lett 579:4201–4206

    CAS  PubMed  Google Scholar 

  • Ilioaia C, Johnson MP, Horton P, Ruban AV (2008) Induction of efficient energy dissipation in the isolated light-harvesting complex of photosystem II in the absence of protein aggregation. J Biol Chem 283:29505–29512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Istokovics A, Simidjiev I, Lajkó F, Garab G (1997) Characterization of the light induced reversible changes in the chiral macroorganization of the chromophores in chloroplast thylakoid membranes. Temperature dependence and effect of inhibitors. Photosynth Res 54:45–53

    CAS  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    CAS  PubMed  Google Scholar 

  • Jajoo A, Szabó M, Zsiros O, Garab G (2012) Low pH induced structural reorganization in thylakoid membranes. Biochim Biophys Acta 1817:1388–1391

    CAS  PubMed  Google Scholar 

  • Janik E, Bednarska J, Zubik M, Puzio M, Luchowski R, Grudzinski W, Mazur R, Garstka M, Maksymiec W, Kulik A, Dietler G, Gruszecki WI (2013) Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. Plant Cell 25:2155–2170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jennings RC, Garlaschi FM, Zucchelli G (1991) Light-induced fluorescence quenching in the light-harvesting chlorophyll a/b protein complex. Photosynth Res 27:57–64

    CAS  PubMed  Google Scholar 

  • Johnson MP, Goral TK, Duffy CD, Brain AP, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keller D, Bustamante C (1986) Theory of the interaction of light with large inhomogeneous molecular aggregates. 2. Psi-type circular dichroism. J Chem Phys 84:2972–2980

    CAS  Google Scholar 

  • Kirchhoff H, Borinski M, Lenhert S, Chi LF, Büchel C (2004) Transversal and lateral exciton energy transfer in grana thylakoids of spinach. Biochemistry 43:14508–14516

    CAS  PubMed  Google Scholar 

  • Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson PA (2007) Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplast. Biochemistry 46:11169–11176

    CAS  PubMed  Google Scholar 

  • Kirchhoff H, Sharpe RM, Herbstova M, Yarbrough R, Edwards GE (2013) Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C-3 and C-4 plants. Plant Physiol 161:497–507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiss AZ, Ruban AV, Horton P (2008) The PsbS protein controls the organisation of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 283:3972–3978

    CAS  PubMed  Google Scholar 

  • Kouril R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12

    CAS  PubMed  Google Scholar 

  • Kouril R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419

    CAS  PubMed  Google Scholar 

  • Kovács L, Damkjaer J, Kereiche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120

    PubMed Central  PubMed  Google Scholar 

  • Krüger TPJ, Novoderezhkin V, Ilioaia C, van Grondelle R (2010) Fluorescence spectral dynamics of single LHCII trimers. Biophys J 98:3093–3101

    PubMed Central  PubMed  Google Scholar 

  • Krüger TPJ, Wientjes E, Croce R, van Grondelle R (2011) Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes. Proc Natl Acad Sci USA 108:13516–13521

    PubMed Central  PubMed  Google Scholar 

  • Krüger TPJ, Ilioaia C, Johnson MP, Ruban AV, Papagiannakis E, Horton P, van Grondelle R (2012) Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys J 102:2669–2676

    PubMed Central  PubMed  Google Scholar 

  • Krupa Z, Huner NPA, Williams JP, Maissan E, James DR (1987) Development at cold-hardening temperatures. The structure and composition of purified rye light harvesting complex II. Plant Physiol 84:19–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambrev P, Tsonev T, Velikova V, Georgieva K, Lambreva M, Yordanov I, Kovács L, Garab G (2007a) Trapping of the quenched conformation associated with non-photochemical quenching of chlorophyll fluorescence at low temperature. Photosynth Res 94:321–332

    CAS  PubMed  Google Scholar 

  • Lambrev P, Várkonyi Z, Krumova S, Kovács L, Miloslavina Y, Holzwarth AR, Garab G (2007b) Importance of trimer-trimer interactions for the native state of the plant light-harvesting complex II. Biochim Biophys Acta 1767:847–853

    CAS  PubMed  Google Scholar 

  • Lambrev PH, Schmitt FJ, Kussin S, Schoengen M, Várkonyi Z, Eichler HJ, Garab G, Renger G (2011) Functional domain size in aggregates of light-harvesting complex II and thylakoid membranes. Biochim Biophys Acta 1807:1022–1031

    CAS  PubMed  Google Scholar 

  • Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR (2012) On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochim Biophys Acta 1817:760–769

    CAS  PubMed  Google Scholar 

  • Larkum AWD, Douglas SE, Raven JA (eds) (2003) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, Volume 14. Kluwer (now Springer), Dordrecht

    Google Scholar 

  • Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111:245–257

    CAS  PubMed  Google Scholar 

  • Liberton M, Page LE, O’Dell WB, O’Neill H, Mamontov E, Urban VS, Pakrasi HB (2013) Organization and flexibility of cyanobacterial thylakoid membranes examined by neutron scattering. J Biol Chem 288:3632–3640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428:287–292

    CAS  PubMed  Google Scholar 

  • Liu C, Zhang Y, Cao D, He Y, Kuang T, Yang C (2008) Structural and functional analysis of the antiparallel strands in the lumenal loop of the major light-harvesting chlorophyll a/b complex of photosystem II (LHCIIb) by site-directed mutagenesis. J Biol Chem 283:487–495

    CAS  PubMed  Google Scholar 

  • Lowenich D, Kleinermanns K, Karunakaran V, Kovalenko SA (2008) Transient and stationary spectroscopy of cytochrome c: ultrafast internal conversion controls photoreduction. Photochem Photobiol 84:193–201

    PubMed  Google Scholar 

  • Miller KR, Staehelin LA (1976) Analysis of thylakoid outer surface – coupling factor is limited to unstacked membrane regions. J Cell Biol 68:30–47

    CAS  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Wientjes E, Reus M, Lambrev P, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomers forming in non-photochemical quenching. FEBS Lett 582:3625–3631

    CAS  PubMed  Google Scholar 

  • Miloslavina Y, Lambrev PH, Javorfi T, Várkonyi Z, Karlicky V, Wall JS, Hind G, Garab G (2012) Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of LHCII. Photosynth Res 111:29–39

    CAS  PubMed  Google Scholar 

  • Minagawa J (2011) State transitions. The molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    CAS  PubMed  Google Scholar 

  • Müh F, Renger T (2012) Refined structure-based simulation of plant light-harvesting complex II: linear optical spectra of trimers and aggregates. Biochim Biophys Acta 1817:1446–1460

    PubMed  Google Scholar 

  • Murakami S, Packer L (1970) Protonation and chloroplast membrane structure. J Cell Biol 47:332–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mustárdy L, Garab G (2003) Granum revisited. A three-dimensional model – where things fall into place. Trends Plant Sci 8:117–122

    PubMed  Google Scholar 

  • Mustárdy L, Buttle K, Steinbach G, Garab G (2008) The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell 20:2552–2557

    PubMed Central  PubMed  Google Scholar 

  • Nagy G (2012) Structure and Dynamics of Photosynthetic Membranes as Revealed by Neutron Scattering. Université de Grenoble, Eötvös University, Grenoble/Budapest

    Google Scholar 

  • Nagy G, Posselt D, Kovács L, Holm JK, Szabó M, Ughy B, Rosta L, Peters J, Timmins P, Garab G (2011) Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. Biochem J 436:225–230

    CAS  PubMed  Google Scholar 

  • Nagy G, Szabó M, Ünnep R, Káli G, Miloslavina Y, Lambrev PH, Zsiros O, Porcar L, Timmins P, Rosta L, Garab G (2012) Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy. Photosynth Res 111:71–79

    CAS  PubMed  Google Scholar 

  • Nagy G, Kovács L, Ünnep R, Zsiros O, Almásy L, Rosta L, Timmins P, Peters J, Posselt D, Garab G (2013) Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small angle neutron scattering. Eur Phys J E Soft Matter 36:69

    Google Scholar 

  • Nakashima N, Yoshihara K (1989) Role of hot molecules formed by internal-conversion in UV single-photon and multiphoton chemistry. J Phys Chem 93:7763–7771

    CAS  Google Scholar 

  • Naqvi KR, Jávorfi T, Melo TB, Garab G (1999) More on the catalysis of internal conversion in chlorophyll a by an adjacent carotenoid in light-harvesting complex (Chla:b LHCII) of higher plants: time-resolved triplet-minus-singlet spectra of detergent-perturbed complexes. Spectrochim Acta A 55:193–204

    Google Scholar 

  • Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Reich Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niyogi KK, Li XP, Rosenberg V, Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHCII complex of higher plants: Modeling based on the 2.72 angstrom crystal structure. J Phys Chem B 109:10493–10504

    CAS  PubMed  Google Scholar 

  • Osváth S, Meszéna G, Barzda V, Garab G (1994) Trapping magnetically oriented chloroplast thylakoid membranes in gels for electric measurements. J Photochem Photobiol B 26:287–292

    PubMed  Google Scholar 

  • Paillotin G, Dobek A, Breton J, Leibl W, Trissl HW (1993) Why does the light-gradient photovoltage from photosynthetic organelles show a wavelength-dependent polarity? Biophys J 65:379–385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petrou K, Belgio E, Ruban AV (2014) pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. Biochim Biophys Acta. doi:10.1016/j.bbabio.2013.11.018

  • Pyszniak AM, Gibbs SP (1992) Immunocytochemical localization of photosystem I and the fucoxanthin-chlorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166:208–217

    CAS  Google Scholar 

  • Rakhimberdieva MG, Stadnichuk IN, Elanskaya TV, Karapetyan NV (2004) Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett 574:85–88

    CAS  PubMed  Google Scholar 

  • Renger G, Renger T (2008) Photosystem II: the machinery of photosynthetic water splitting. Photosynth Res 98:53–80

    CAS  PubMed  Google Scholar 

  • Ruban AV, Horton P (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. 1. Spectroscopic analysis of isolated light-harvesting complexes. Biochim Biophys Acta 1102:30–38

    CAS  Google Scholar 

  • Rutkauskas D, Novoderezhkin V, Cogdell RJ, van Grondelle R (2004) Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. Biochemistry 43:4431–4438

    CAS  PubMed  Google Scholar 

  • Rutkauskas D, Chmeliov J, Johnson M, Ruban A, Valkunas L (2012) Exciton annihilation as a probe of the light-harvesting antenna transition into the photoprotective mode. Chem Phys 404:123–128

    CAS  Google Scholar 

  • Santabarbara S, Barbato R, Zucchelli G, Garlaschi FM, Jennings RC (2001) The quenching of photosystem II fluorescence does not protect the D1 protein against light induced degradation in thylakoids. FEBS Lett 505:159–162

    CAS  PubMed  Google Scholar 

  • Schaller S, Latowski D, Jemiola-Rzeminska M, Dawood A, Wilhelm C, Strzalka K, Goss R (2011) Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochim Biophys Acta 1807:326–335

    CAS  PubMed  Google Scholar 

  • Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005) Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17:2580–2586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simidjiev I, Barzda V, Mustárdy L, Garab G (1997) Isolation of lamellar aggregates of the light-harvesting chlorophyll a/b protein complex of photosystem II with long-range chiral order and structural flexibility. Anal Biochem 250:169–175

    CAS  PubMed  Google Scholar 

  • Simidjiev I, Barzda V, Mustárdy L, Garab G (1998) Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II. Biochemistry 37:4169–4173

    CAS  PubMed  Google Scholar 

  • Simidjiev I, Várkonyi Z, Lambrev PH, Garab G (2011) Isolation and characterization of lamellar aggregates of LHCII and LHCII-lipid macro-assemblies with light-inducible structural transitions. In: Carpentier R (ed) Photosynthesis Research Protocols. Methods in Molecular Biology, Volume 684. Springer, Dordrecht, pp 127–138

    Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stirbet A (2013) Photosystem II excitonic connectivity: what is it, and how to measure it? Photosynth Res 116:189–214

    CAS  PubMed  Google Scholar 

  • Stoitchkova K, Zsiros O, Jávorfi T, Páli T, Andreeva A, Gombos Z, Garab G (2007) Heat- and light-induced reorganizations in the phycobilisome antenna of Synechocystis sp PCC 6803. Thermo-optic effect. Biochim Biophys Acta 1767:750–756

    CAS  PubMed  Google Scholar 

  • Sybesma C (1989) Biophysics: An Introduction. Springer, Dordrecht

    Google Scholar 

  • Szabó M, Lepetit B, Goss R, Wihelm C, Mustárdy L, Garab G (2008) Structurally flexible macro-organization of the pigment-protein complexes of the diatom Phaeodactylum tricornutum. Photosynth Res 95:237–245

    PubMed  Google Scholar 

  • Szabó M, Premvardhan L, Lepetit B, Goss R, Wilhelm C, Garab G (2010) Functional heterogeneity of the fucoxanthins and fucoxanthin-chlorophyll proteins in diatom cells revealed by their electrochromic response and fluorescence and linear dichroism spectra. Chem Phys 373:110–114

    Google Scholar 

  • Tamary E, Kiss V, Nevo R, Adam Z, Bernát G, Rexroth S, Rögner M, Reich Z (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim Biophys Acta 1817:319–327

    CAS  PubMed  Google Scholar 

  • Tikkanen M, Aro E-M (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238

    CAS  PubMed  Google Scholar 

  • Tinoco IJ, Mickols W, Maestre MF, Bustamante C (1987) Absorption, scattering, and imaging of biomolecular structures with polarized light. Annu Rev Biophys Biophys Chem 16:319–349

    CAS  PubMed  Google Scholar 

  • Ünnep R, Zsiros O, Solymosi K, Kovács L, Lambrev PH, Tóth T, Schweins R, Posselt D, Székely N, Rosta L, Nagy G, Garab G (2014) The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim Biophys Acta. 1837:1572–1580

    Google Scholar 

  • Valkunas L, Chmeliov J, Trinkunas G, Duffy CDP, van Grondelle R, Ruban AV (2011) Excitation migration, quenching, and regulation of photosynthetic light harvesting in photosystem II. J Phys Chem B 115:9252–9260

    CAS  PubMed  Google Scholar 

  • van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic Excitons. World Scientific, Singapore

    Google Scholar 

  • van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007) Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett 581:3528–3532

    PubMed  Google Scholar 

  • Várkonyi Z, Nagy G, Lambrev P, Kiss AZ, Székely N, Rosta L, Garab G (2009) Effect of phosphorylation on the thermal and light stability of the thylakoid membranes. Photosynth Res 99:161–171

    PubMed  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta 1817:209–217

    CAS  PubMed  Google Scholar 

  • Vink M, Zer H, Alumot N, Gaathon A, Niyogi K, Herrmann RG, Andersson B, Ohad I (2004) Light-modulated exposure of the light-harvesting complex II (LHCII) to protein kinase(s) and state transition in Chlamydomonas reinhardtii xanthophyll mutants. Biochemistry 43:7824–7833

    CAS  PubMed  Google Scholar 

  • Wientjes E, Croce R (2012) PMS: photosystem I electron donor or fluorescence quencher. Photosynth Res 111:185–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wientjes E, van Amerongent H, Croce R (2013) LHCII is an antenna for both photosystems after long-term acclimation. Biochim Biophys Acta 1827:420–426

    CAS  PubMed  Google Scholar 

  • Wilson A, Ajlani G, Verbavatz J-M, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson A, Boulay C, Wilde A, Kerfeld CA, Kirilovsky D (2007) Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19:656–672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wise RR, Hoober JK (eds) (2006) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, Volume 23. Springer, Dordrecht

    Google Scholar 

  • Yamamoto Y (2001) Quality control of photosystem II. Plant Cell Physiol 42:121–128

    CAS  PubMed  Google Scholar 

  • Yang D-H, Paulsen H, Andersson B (2000) The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis. FEBS Lett 466:385–388

    CAS  PubMed  Google Scholar 

  • Yang C, Lambrev P, Chen Z, Jávorfi T, Kiss AZ, Paulsen H, Garab G (2008) The negatively charged amino acids in the lumenal loop influence the pigment binding and conformation of the major light-harvesting chlorophyll a/b complex of photosystem II. Biochim Biophys Acta 1777:1463–1470

    CAS  PubMed  Google Scholar 

  • Zer H, Vink M, Keren N, Dilly-Hartwig HG, Paulsen H, Herrmann RG, Andersson B, Ohad I (1999) Regulation of thylakoid protein phosphorylation at the substrate level: reversible light-induced conformational changes expose the phosphorylation site of the light-harvesting complex II. Proc Natl Acad Sci USA 96:8277–8282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zer H, Vink M, Shochat S, Herrmann RG, Andersson B, Ohad I (2003) Light affects the accessibility of the thylakoid light harvesting complex II (LHCII) phosphorylation site to the membrane protein kinase(s). Biochemistry 42:728–738

    CAS  PubMed  Google Scholar 

  • Zimányi L, Garab G (1989) Configuration of the electric field and distribution of ions in energy transducing biological membranes: model calculations in a vesicle containing discrete charges. J Theor Biol 138:59–76

    Google Scholar 

  • Zubik M, Luchowski R, Grudzinski W, Gospodarek M, Gryczynski I, Gryczynski Z, Dobrucki JW, Gruszecki WI (2011) Light-induced isomerization of the LHCII-bound xanthophyll neoxanthin: possible implications for photoprotection in plants. Biochim Biophys Acta 1807:1237–1243

    CAS  PubMed  Google Scholar 

  • Zubik M, Luchowski R, Puzio M, Janik E, Bednarska J, Grudzinski W, Gruszecki WI (2012) The negative feedback molecular mechanism which regulates excitation level in the plant photosynthetic complex LHCII: towards identification of the energy dissipative state. Biochim Biophys Acta 1827:355–364

    PubMed  Google Scholar 

Download references

Acknowledgments

I am indebted to Dr. Petar Lambrev for fruitful discussions and for his CD data, Dr. Geoffrey Hind for the analysis of scanning transmission electron microscopy images of LHCII microcrystals and helpful advice, Dr. Krzysztof Pawlak for his help in preparing the illustrations, and Drs. Gergely Nagy, Subramanyam Rajagopal and Milán Szabó for providing some of their unpublished figures. I am grateful to Profs. Govindjee, Barbara Demmig-Adams and Herbert van Amerongen, and Dr. Tjaart Krüger for critical reading of the manuscript and helpful comments. This work was supported by grants from NKTH-OTKA (CNK 80342), NIH-A*STAR (TÉT 10-1-2011-0279) and TÁMOP-4.2.2.A-11/1/KONV-2012-0060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Győző Garab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Garab, G. (2014). Structural Changes and Non-Photochemical Quenching of Chlorophyll a Fluorescence in Oxygenic Photosynthetic Organisms. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_16

Download citation

Publish with us

Policies and ethics