Skip to main content

Detection of Human Pathogens on Plants

  • Chapter
  • First Online:
Detection and Diagnostics of Plant Pathogens

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 5))

Abstract

Unlike most plant pathogens, which typically multiply to large numbers after colonizing tissues of susceptible plants, human pathogens that associate with plants often fail to thrive in this environment and usually occur in low numbers. Nevertheless, their presence on plants could have significant public health and economic consequences. In recent years, national and international disease outbreaks associated with human pathogens on plant products, such as lettuce, spinach, green onions, seeds, sprouts, peppers, spices, tomatoes, and cantaloupes, have occurred frequently. Current standardized assays for the detection of major human pathogens on plants rely largely on microbiological, biochemical, and immunological analyses that are laborious and time consuming. Newer molecular-based methods, such as PCR, loop mediated isothermal amplification, and metagenomics approaches offer enhanced speed and sensitivity, and some of these have already been incorporated into the standard assays. However, molecular detection methods do not produce a live microbial isolate, which may be needed for government regulatory actions and future scientific studies. New enrichment strategies (especially the use of chromogenic selective media) have made culture detection more sensitive and accurate. Effective detection and diagnostic methods of the future will continue to differ in features depending upon the intended application and operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulmawjood A, Bültea M, Cook N, Rotha S, Schönenbrüchera H, Hoorfar J (2003) Toward an international standard for PCR-based detection of Escherichia coli O157. Part 1. Assay development and multi-center validation. J Microbiol Methods 55:775–786

    Article  PubMed  CAS  Google Scholar 

  • Amoako KK (2013) Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology. Int J Food Microbiol 165:319–325

    Article  PubMed  CAS  Google Scholar 

  • Anklam KS, Kanankege KS, Gonzales TK, Kaspar CW, Döpfer D (2012) Rapid and reliable detection of Shiga toxin-producing Escherichia coli by real-time multiplex PCR. J Food Prot 75:643–650

    Article  PubMed  CAS  Google Scholar 

  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28:1–12

    Article  PubMed  CAS  Google Scholar 

  • Aznar R, Alarcón B (2002) On the specificity of PCR detection of Listeria monocytogenes in food: a comparison of published primers. System Appl Microbiol 25:109–119

    Article  CAS  Google Scholar 

  • Badosa E, Chico N, Pla M, Parés D, Montesinos E (2009) Evaluation of ISO enrichment real-time PCR methods with internal amplification control for detection of Listeria monocytogenes and Salmonella enterica in fresh fruit and vegetables. Lett Appl Microbiol 49:105–111

    Article  PubMed  CAS  Google Scholar 

  • Barak JD, Schroeder BK (2012) Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. Annu Rev Phytopathol 50:241–266. doi:10.1146/annurev-phyto-081211-172936

    Article  PubMed  CAS  Google Scholar 

  • Behravesh CB, Mody RK, Jungk J, Gaul L, Redd JT, Chen S, Cosgrove S, Hedican E, Sweat D, Chavez-Hauser L, Snow SL, Hanson H, Nguyen TA, Sodha SV, Boore AL, Russo E, Mikoleit M, Theobald L, Gerner-Smidt P, Hoekstra RM, Angulo FJ, Swerdlow DL, Tauxe RV, Griffin PM, Williams IT (2011) 2008 outbreak of Salmonella Saintpaul infections associated with raw produce. N Engl J Med 364:918–927. doi:10.1056/NEJMoa1005741

    Article  CAS  Google Scholar 

  • Bhagwat AA (2003) Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR. Int J Food Microbiol 84:217–224

    Article  PubMed  CAS  Google Scholar 

  • Bielaszewska M, Mellmann A, Zhang W, Kock R, Fruth A, Bauwens A, Peters G, Karch H (2011) Characterization of the Escherichia coli strain associated with an outbreak of hemolytic-uremic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676

    Article  PubMed  CAS  Google Scholar 

  • Bloch SK, Felczykowska A, Nejman-Falenczyk B (2012) Escherichia coli O104:H4 outbreak – have we learned a lesson from it? Acta Biochim Pol 59:483–484

    PubMed  CAS  Google Scholar 

  • Bowen A, Fry A, Richards G, Beuchat L (2006) Infections associated with cantaloupe consumption: a public health concern. Epidemiol Infect 134:675–685. doi:10.1017/S0950268805005480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brandl MT (2006) Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol 44:367–392. doi:10.1146/annurev.phyto.44.070505.143359

    Article  PubMed  CAS  Google Scholar 

  • Brehm-Stecher BF, Johnson EA (2007) Rapid detection of Listeria. In: Marth E, Ryser E (eds) Listeria, listeriosis and food safety, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • CDC (2011) Multistate outbreak of Listeriosis linked to whole cantaloupes from Jensen Farms, Colorado.http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/index.html. Accessed 21 Aug 2012

  • Chen Y, Kumar N, Sidddique N (2011) Development and evaluation of a real-time polymerase chain reaction assay targeting iap for the detection of Listeria monocytogenes in select food matrices. Foodborne Pathog Dis 8:1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422. doi:10.1146/annurev.micro.61.080706.093316

    Article  PubMed  CAS  Google Scholar 

  • Delibato E, Anniballi F, Vallebona PS, Palleschi G, Volpe G, Losio MN, De Medici D (2013) Validation of a 1-day analytical diagnostic real-time PCR for the detection of Salmonella in different food meat categories. Food Anal Methods 6:996–1003

    Article  Google Scholar 

  • Dinu LD, Bach S (2013) Detection of viable but non-culturable Escherichia coli O157:H7 from vegetable samples using quantitative PCR with propidium monoazide and immunological assays. Food Control 31:268–273

    Article  CAS  Google Scholar 

  • Dupray E, Caprais MP, Derrien A, Fach P (1997) Salmonella DNA persistence in natural seawaters using PCR analysis. J Appl Bacteriol 82:507–510

    Article  CAS  Google Scholar 

  • Elizaquível P, Sánchez G, Aznar R (2012) Application of propidium monoazide quantitative PCR for selective detection of live Escherichia coli O157:H7 in vegetables after inactivation by essential oils. Int J Food Microbiol 159:115–121

    Article  PubMed  Google Scholar 

  • Elizaquível P, Maryam A, Gloria S, Rosa A (2013) Evaluation of Zataria multiflora Boiss. essential oil activity against Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes by propidium monoazide quantitative PCR in vegetables. Food Control 34:770–776

    Article  Google Scholar 

  • Eom HS, Hwang BH, Kim DH, Lee IB, Kim YH, Cha HJ (2007) Multiple detection of foodborne pathogenic bacteria using a novel 16S rDNA-based oligonucleotide signature chip. Biosens Bioelectr 22:845–853

    Article  CAS  Google Scholar 

  • Fletcher J, Leach J, Eversole K, Tauxe R (2013) Human pathogens on plants: designing a multidisciplinary strategy for research. Phytopathology 103:306–315

    Article  PubMed  Google Scholar 

  • Fratamico P, Strobaugh TP (1998) Simultaneous detection of Salmonella spp. and Escherichia coli O157:H7 by multiplex PCR. J Ind Microbiol Biotechnol 21:92–99

    Article  CAS  Google Scholar 

  • Gannon VPJ, D’Souza S, Graham T, King RK, Rahn K, Read S (1997) Use of the flagellar H7 gene as a target in multiplex PCR assays and improved specificity in identification of enterohemorrhagic Escherichia coli strains. J Clin Microbiol 35:656–662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta SK, Nalluswami K, Snider C, Perch M, Balasegaram M, Burmeister D, Lockett J, Sandt C, Hoekstra RM, Montgomery S (2007) Outbreak of Salmonella Braenderup infections associated with Roma tomatoes, northeastern United States, 2004: a useful method for subtyping exposures in field investigations. Epidemiol Infect 135:1165–1173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hilborn ED, Mermin JH, Mshar PA, Hadler JL, Voetsch A, Wojtkunski C, Swartz M, Mshar R, Lambert-Fair MA, Farrar JA, Glynn MK, Slutsker L (1999) A multistate outbreak of Escherichia coli O157:H7 infections associated with consumption of mesclun lettuce. Arch Int Med 159:1758–1764

    Article  CAS  Google Scholar 

  • Jin HY, Tao KH, Li YX, Li FQ, Li SQ (2005) Microarray analysis of Escherichia coli O157:H7. World J Gastroenterol 11:5811–5815

    PubMed  CAS  Google Scholar 

  • Johnston LM, Elhanafi D, Drake M, Jaykus L (2005) A simple method for the direct detection of Salmonella and Escherichia coli O157:H7 from raw alfalfa sprouts and spent irrigation water using PCR. J Food Prot 68:2256–2263

    PubMed  CAS  Google Scholar 

  • Kotzekidou P (2013) Survey of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 in raw ingredients and ready-to-eat products by commercial real-time PCR kits. Food Microbiol 35:86–91

    Article  PubMed  CAS  Google Scholar 

  • Krascsenicsova K, Piknova L, Kaclikova E, Kuchta T (2008) Detection of Salmonella enterica in food using two-step enrichment and real-time polymerase chain reaction. Lett Appl Microbiol 46:483–487

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Mustapha A (2004) Simultaneous detection of Escherichia coli O157:H7, Salmonella, and Shigella in apple cider and produce by a multiplex PCR. J Food Prot 67:27–33

    PubMed  CAS  Google Scholar 

  • Liming SH, Zhang Y, Meng J, Bhagwat AA (2004) Detection of Listeria monocytogenes in fresh produce using molecular beacon – real-time PCR technology. J Food Sci 69:M240–M245

    Article  CAS  Google Scholar 

  • Lynch MF, Tauxe RV, Hedberg CW (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137:307–315

    Article  PubMed  CAS  Google Scholar 

  • Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751. doi:10.1371/journal.pone.002275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miller ND, Draughon FA, D’Souza DH (2010) Real-time reverse-transcriptase-polymerase chain reaction for Salmonella enterica detection from jalapeño and serrano peppers. Foodborne Pathog Dis 7:367–373

    Article  PubMed  CAS  Google Scholar 

  • Miller ND, Davidson PM, D’Souza DH (2011) Real-time reverse-transcriptase PCR for Salmonella Typhimurium detection from lettuce and tomatoes. Food Sci Tech 44:1088–1097

    CAS  Google Scholar 

  • Mody RK, Greene SA, Gaul L, Sever A, Pichette S, Zambrana I, Dang T, Gass A, Wood R, Herman K, Cantwell LB, Falkenhorst G, Wannemuehler K, Hoekstra RM, McCullum I, Cone A, Franklin L, Austin J, Delea K, Behravesh CB, Sodha SV, Yee JC, Emanuel B, Al-Khaldi SF, Jefferson V, Williams IT, Griffin PM, Swerdlow DL (2011) National outbreak of Salmonella serotype saintpaul infections: importance of Texas restaurant investigations in implicating jalapeno peppers. PLoS One 6:e16579. doi:10.1371/journal.pone.0016579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mori Y, Notomi T (2009) Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 15:62–69

    Article  PubMed  CAS  Google Scholar 

  • Mothershed EA, Whitney AM (2006) Nucleic acid-based methods for the detection of bacterial pathogens: present and future considerations for the clinical laboratory. Clin Chim Acta 363:206–220

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from the cells. J Microbiol Met 67:310–320

    Article  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • O’Grady J, Sedano-Balbás S, Maher M, Smith TJ, Barry T (2008) Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol 25:75–84

    Article  Google Scholar 

  • O’Grady J, Ruttledge M, Sedano-Balbás S, Smith TJ, Barry T, Maher M (2009) Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR. Food Microbiol 26:4–7

    Article  PubMed  Google Scholar 

  • Park MK, Weerakoon KA, Oh JH, Chin BA (2013) The analytical comparison of phage-based magnetoelastic biosensor with Taq Man-based quantitative PCR method to detect Salmonella Typhimurium on cantaloupes. Food Control 33:330–336

    Article  CAS  Google Scholar 

  • Paton AW, Paton JC (1998) Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx 1, stx 2, eaeA, enterohemorrhagic E. coli hlyA, rfb O111, and rfb O157. J Clin Microbiol 36:598–602

    PubMed  CAS  PubMed Central  Google Scholar 

  • Severgnini M, Cremonesi P, Consolandi C, de Bellis G, Castiglioni B (2011) Advances in DNA microarray technology for the detection of foodborne pathogens. Food Bioprocess Technol 4:936–953

    Article  Google Scholar 

  • Shearer AEH, Strapp CM, Joerfer RD (2001) Evaluation of a polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp, and Listeria monocytogenes on fresh fruits and vegetables. J Food Prot 64:788–795

    PubMed  CAS  Google Scholar 

  • Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13:1763–1786

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Prot 67:2342–2353

    PubMed  Google Scholar 

  • Stobbe T, Daniels J, Espindola A, Melcher U, Ochoa Corona F, Garzon C, Verma R, Fletcher J, Schneider W (2013) Electronic diagnostic nucleic acid analysis (EDNA): a theoretical approach for improved handling of massively parallel sequencing data for diagnostics. J Micr Meth. http://dx.doi.org/10.1016/j.mimet.2013.07.002

  • Suo B, He Y, Paoli G, Gehring A, Tu SI, Shi X (2010) Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol Cell Probes 24:77–86

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Barak JD, Schneider KR (2009) Human enteric pathogens in produce: un-answered ecological questions with direct implications for food safety. Curr Opin Plant Biotechnol 20:166–171

    Article  CAS  Google Scholar 

  • Timmons C, Dobhal S, Fletcher J, Ma LM (2012) Primers with 5′ flaps improve the efficiency and sensitivity of multiplex PCR assays for the detection of Salmonella and Escherichia coli O157:H7. J Food Prot 76:668–673

    Article  Google Scholar 

  • Tlili C, Sokullu E, Safavieh M, Tolba M, Ahmed MU, Zourob M (2013) Bacteria screening, viability, and confirmation assays using bacteriophage-impedimetric/loop-mediated isothermal amplification dual-response biosensors. Analyt Chem 85:4893–4901

    Article  CAS  Google Scholar 

  • TwardoÅ„ J, SobieszczaÅ„ska B, Gonet A, BÅ‚aszkowska M (2005) Epidemiology of Shiga-like toxin-producing Escherichia coli strains (STEC). Elect J Polish Agric Univ 8, #03. Online: http://www.ejpau.media.pl/volume8/issue4/art-03.html. Accessed 8 Oct 2013

  • U.S. Department of Agriculture (2013) Microbiology laboratory guidebook. http://www.fsis.usda.gov/wps/portal/fsis/topics/science/laboratories-and-procedures/guidebooks-and-methods/microbiology-laboratory-guidebook/microbiology-laboratory-guidebook. Accessed 8 Nov 2013

  • U.S. Food & Drug Administration (2013a) Bacteriological Analytical Manual (BAM). http://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm2006949.htm. Accessed 8 Nov 2013

  • U.S. Food & Drug Administration (2013b) The reportable food registry third annual report: targeting inspection resources and identifying patterns of adulteration. http://www.fda.gov/downloads/Food/ComplianceEnforcement/RFR/UCM349856.pdf. Accessed 8 Nov 2013

  • Velusamy V, Arsha K, Korostynska O, Oliwa K, Adley C (2009) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  PubMed  Google Scholar 

  • Vidaver AK, Tolin S, Lambrecht P (2006) Laboratory, growth chamber and greenhouse microbial safety: plant pathogens and plant associated microorganisms of significance to human health. In: Fleming DO, Hunt DL (eds) Biological safety: principles and practices. ASM Press, Washington, DC

    Google Scholar 

  • Volokhov D, Rasooly A, Chumakov K, Chizhikov V (2002) Identification of Listeria species by microarray-based assay. J Clin Microbiol 40:4720–4728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang F, Jiang L, Yang Q, Prinyawiwatkul W, Ge B (2012) Rapid and specific detection of Escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157 in ground beef, beef trim, and produce by loop-mediated isothermal amplification. Appl Environ Microbiol 78:2727–2736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Warren BR, Yuk H-G, Schneider KR (2007) Detection of Salmonella by flow-through immunocapture real-time PCR in selected foods within 8 hours. J Food Prot 70:1002–1006

    PubMed  CAS  Google Scholar 

  • Weagant SD, Jinneman KC, Yoshitomi KJ, Zapata R, Fedio WM (2011) Optimization and evaluation of a modified enrichment procedure combined with immunomagnetic separation for detection of E. coli O157:H7 from artificially contaminated alfalfa sprouts. Int J Food Microbiol 149:209–217

    Article  PubMed  Google Scholar 

  • Wendel AM, Johnson DH, Sharapov U, Grant J, Archer JR, Monson T, Koschmann C, Davis JP (2009) Multistate outbreak of Escherichia coli O157:H7 infection associated with consumption of packaged spinach, August-September 2006: the Wisconsin investigation. Clin Infect Dis 48:1079–1086. doi:10.1086/597399

    Article  PubMed  Google Scholar 

  • Wheeler C, Vogt TM, Armstrong GL, Vaughan G, Weltman A, Nainan OV, Dato V, Xia G, Waller K, Amon J, Lee TM, Highbaugh-Battle A, Hembree C, Evenson S, Ruta MA, Williams IT, Fiore AE, Bell BP (2005) An outbreak of hepatitis A associated with green onions. N Engl J Med 353:890–897. doi:10.1056/NEJMoa050855

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki-Matsune W, Taguchi M, Seto K, Kawahara R, Kawatsu K, Kumeda Y, Nukina M, Misawa N, Tsukamoto T (2007) Development of a multiplex PCR assay for identification of Campylobacter coli, Campylobacter fetus, Campylobacter hyointestinalis subsp. hyointestinalis, Campylobacter jejuni, Campylobacter lari and Campylobacter upsaliensis. J Med Microbiol 56:1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Yoon J, Kim B (2012) Lab-on-a-Chip pathogen sensors for food safety. Sensors 12:10713–10741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshitomi KJ, Jinneman KC, Zapata R, Weagant SD, Fedio WM (2012) Detection and isolation of low levels of E. coli O157:H7 in cilantro by real-time PCR, immunomagnetic separation, and cultural methods with and without an acid treatment. J Food Sci 77:M481–M489

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Maria Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ma, L.M., Fletcher, J., Zhang, G. (2014). Detection of Human Pathogens on Plants. In: Gullino, M., Bonants, P. (eds) Detection and Diagnostics of Plant Pathogens. Plant Pathology in the 21st Century, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9020-8_6

Download citation

Publish with us

Policies and ethics