Skip to main content

Proximal Sensing of Plant Diseases

  • Chapter
  • First Online:
Book cover Detection and Diagnostics of Plant Pathogens

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 5))

Abstract

Proximal sensing techniques have a large potential in surveying crops for the occurrence of diseases varying in spatial and temporal distribution within crops. Incidence of plant diseases results from crop status, the presence of inoculum, and suitable abiotic environmental factors, and often is heterogeneous in the field. Various technical sensors may be suitable for the detection, identification and quantification of plant diseases on different scales. Thermography, fluorescence and spectral sensors are very promising, but other techniques like electronic nose may be also useful. The full potential of these advanced detector technologies may be exploited only in combination with innovative methods of data processing for the extraction of relevant information. These technologies may support further Integrated Pest Management programs for sustainable crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich WB (2011) Early detection of Fusarium infection in wheat using hyperspectral imaging. Comput Electron Agric 75:304–312

    Article  Google Scholar 

  • Bellow S, Latouche G, Brown SC, Poutaraud A, Cerovic ZG (2013) Optical detection of downy mildew in grapevine leaves: daily kinetics of autofluorescence upon infection. J Exp Bot 64:333–341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blackburn GA (2007) Hyperspectral remote sensing of plant pigments. J Exp Bot 58:844–867

    Google Scholar 

  • Bock CH, Poole GH, Parker PE, Gottwald TR (2010) Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29:59–107

    Article  Google Scholar 

  • Boquete L, Ortega S, Miguel-Jienez JM, Rodriguez- Ascariz JM, Blanco R (2010) Automated detection of breast cancer in thermal infrared images, based on independent component analysis. J Med Syst 36:103–111

    Article  PubMed  Google Scholar 

  • Bravo C, Moushou D, West J, McCartney A, Ramon H (2003) Early disease detection in wheat fields using spectral reflectance. Biosyst Eng 84:137–145

    Article  Google Scholar 

  • Buerling K, Hunsche M, Noga G (2011) Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in wheat. J Plant Physiol 168:1641–1648

    Article  CAS  Google Scholar 

  • Buerling K, Hunsche M, Noga G (2012) Presymptomatic detection of powdery mildew infection in winter wheat cultivars by laser-induced fluorescence. Appl Spectrosc 66:1411–1419

    Article  CAS  Google Scholar 

  • Cao X, Luo Y, Zhou Y, Duan X, Cheng D (2013) Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance. Crop Prot 45:124–131

    Article  Google Scholar 

  • Carrol MW, Glaser JA, Hellmich RL, Hunt TE, Sappington TW, Calvin D et al (2008) Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots. J Econ Entomol 101:1614–1623

    Article  Google Scholar 

  • Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88:677–684

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Van der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends Plant Sci 5:495–501

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784

    Article  PubMed  CAS  Google Scholar 

  • Chaerle L, Lenk S, Leinonen I, Jones HG, Van der Straeten D, Buschmann C (2009) Multi-sensor plant imaging: towards the development of a stress catalogue. Biotechnol J 4:1152–1167

    Article  PubMed  CAS  Google Scholar 

  • Csefalvay L, Di Gaspero G, Matous K, Bellin D, Ruperti B, Olejnickova J (2009) Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. Eur J Plant Pathol 125:291–302

    Article  CAS  Google Scholar 

  • Delalieux S, van Aardt J, Keulemans W, Coppin P (2007) Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications. Eur J Agronomy 27:130–143

    Article  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Franke J, Menz G (2007) Multi-temporal wheat disease detection by multi-spectral remote sensing. Precison Agric 8:161–172

    Article  Google Scholar 

  • Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science 327:828–831

    Article  PubMed  CAS  Google Scholar 

  • Hadjiloucas S, Walker GC, Bowen JW, Zafiropoulos A (2009) Propagation of errors from a null balance terahertz reflectometer to a sample’s relative water content. J Phys: Conf Ser Sens Appl XV(178):012012, 1–5

    Google Scholar 

  • Hillnhuetter C, Mahlein A-K, Sikora RA, Oerke E-C (2011a) Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crop Res 122:70–77

    Article  Google Scholar 

  • Hillnhuetter C, Mahlein A-K, Sikora RA, Oerke E-C (2011b) Use of imaging spectroscopy to discriminate symptoms caused by Heterodera schachtii and Rhizoctonia solani on sugar beet. Precision Agric 13:17–32

    Article  Google Scholar 

  • Hillnhuetter C, Sikora RA, Oerke E-C, van Dusschoten D (2012) Nuclear magnetic resonance: a tool for imaging belowground damage caused by Heterodera schachtii and Rhizoctonia solani on sugar beet. J Exp Bot 63:319–327

    Article  CAS  Google Scholar 

  • Huang LS, Zhao JL, Zhang DY, Dong YY, Zhang JC (2012) Identifying and mapping stripe rust in winter wheat using multi-temporal airborne hyperspectral images. Int J Agric Biol 14:697–704

    Google Scholar 

  • Jacquemoud, S, Ustin SL (2001) Leaf optical properties: a state of the art. In Proceedings 8th international symposium physical measurements & signatures in remote sensing, CNES, Aussois, France, 8–12 Jan 2001, pp 223–232

    Google Scholar 

  • Jones HG, Schofield P (2008) Thermal and other remote sensing of plant stress. Gen Appl Plant Physiol 34:19–32

    Google Scholar 

  • Kobayashi T, Kanda E, Kitada K, Ishiguro K, Torigoe Y (2001) Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology 91:316–323

    Article  PubMed  Google Scholar 

  • Kuckenberg J, Tartachnyk I, Noga G (2009) Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precision Agric 10:34–44

    Article  Google Scholar 

  • Kushalappa AC, Lui LH, Chen CR, Lee B (2002) Volatile fingerprinting (SPMEGCFID) to detect and discriminate diseases of potato tubers. Plant Dis 86:131–137

    Article  Google Scholar 

  • Laothawornkitkul J, Moore JP, Taylor JE, Possell M, Gibson TD, Hewitt CN, Paul ND (2008) Discrimination of plant volatile signatures by an electronic nose: a potential technology for plant pest and disease monitoring. Environ Sci Tech 42:8433–8439

    Article  CAS  Google Scholar 

  • Lenthe J-H (2006) Erfassung befallsrelevanter Klimafaktoren in Weizenbeständen mit Hilfe digitaler Infrarot-Thermographie. PhD thesis, University of Bonn

    Google Scholar 

  • Lenthe J-H, Oerke E-C, Dehne H-W (2007) Digital thermography for monitoring canopy health of wheat. Precision Agric 8:15–26

    Article  Google Scholar 

  • Li C, KrewerG, Kays SJ (2009) Blueberry postharvest disease detection using an electronic nose. ASABE paper no. 096783, ASABE annual international meeting, Reno, NV, June 21–June 24, 2009

    Google Scholar 

  • Lindenthal M (2005) Visualisierung der Krankheitsentwicklung von Falschem Mehltau an Gurken durch Pseudoperonospora cubensis mittels Thermography. PhD thesis, University of Bonn

    Google Scholar 

  • Lindenthal M, Steiner U, Dehne HW, Oerke EC (2005) Effect of downy mildew development on transpiration of cucumber leaves visualized by digital thermography. Phytopathology 95:233–240

    Article  PubMed  Google Scholar 

  • Mahlein AK, Steiner U, Dehne HW, Oerke EC (2010) Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agric 11:413–431

    Article  Google Scholar 

  • Mahlein AK, Oerke EC, Steiner U, Dehne HW (2012a) Recent advances in sensing plant diseases for precision crop protection. Eur J Plant Pathol 133:197–203

    Article  CAS  Google Scholar 

  • Mahlein AK, Steiner U, Hillnhuetter C, Dehne HW, Oerke EC (2012b) Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8:3. doi:10.1186/1746-4811-8-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahlein AK, Rumpf T, Welke P, Dehne HW, Pluemer L, Steiner U, Oerke EC (2013) Development of spectral indices for detecting and identifying plant diseases. Remote Sens Environ 128:21–30

    Article  Google Scholar 

  • Markom MA, Shakaff AYM, Adom AH, Ahmad MN, Hidayat W, Abdullah AH, Fikri NA (2009) Intelligent electronic nose system for basal stem rot disease detection. Comput Electron Agric 66:140–146

    Article  Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    Article  PubMed  CAS  Google Scholar 

  • Moshou D, Bravo C, West J, Wahlen S, McCartney A, Ramon H (2004) Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput Electron Agric 44:173–188

    Article  Google Scholar 

  • Naidu RA, Perry EM, Pierce FJ, Mekuria T (2009) The potential of spectral reflectance technique for the detection of grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput Electron Agric 66:38–45

    Article  Google Scholar 

  • Narvankar DS, Singh CB, Jayas DS, White NDG (2009) Assessment of soft X-ray imaging for detection of fungal infection in wheat. Biosyst Eng 103:49–56

    Article  Google Scholar 

  • Nutter F, van Rij N, Eggenberger SK, Holah N (2010) Spatial and temporal dynamics of plant pathogens. In: Oerke EC, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection – the challenge and use of heterogeneity. Springer, Dordrecht, pp 27–50

    Chapter  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oerke EC, Steiner U (2010) Potential of digital thermography for disease control. In: Oerke EC, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection – the challenge and use of heterogeneity. Springer, Dordrecht, pp 167–182

    Chapter  Google Scholar 

  • Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132

    Article  PubMed  CAS  Google Scholar 

  • Oerke EC, Gerhards R, Menz G, Sikora RA (2010) Preface. In: Oerke EC, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection – the challenge and use of heterogeneity. Springer, Dordrecht

    Chapter  Google Scholar 

  • Oerke EC, Fröhling P, Steiner U (2011) Thermographic assessment of scab disease on apple leaves. Precision Agric 12:699–715

    Article  Google Scholar 

  • Pearson TC, Wicklow DT (2006) Detection of kernels infected by fungi. Trans ASABE 49(4):1235–1245

    Article  Google Scholar 

  • Pietrzykowski E, Stone C, Pinkard E, Mohammed C (2006) Effects of Mycosphaerella leaf disease on the spectral reflectance properties of juvenile Eucalyptus globules foliage. Forest Pathol 36:334–348

    Article  Google Scholar 

  • Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G et al (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:110–122

    Article  Google Scholar 

  • Prithiviraj B, Vikram A, Kushalappa AC, Yaylayam V (2004) Volatile metabolite profiling for the discrimination of onion bulbs infected by Erwinia carotovora ssp. carotovora, Fusarium oxysporum and Botrytis allii. Eur J Plant Physiol 110:371–377

    CAS  Google Scholar 

  • Quin J, Burks TF, Ritenour MA, Bonn WG (2009) Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J Food Eng 93:183–191

    Article  Google Scholar 

  • Reynolds GJ, Windels CE, MacRae IV, Laguette S (2012) Remote sensing for assessing Rhizoctonia crown and root rot severity in sugar beet. Plant Dis 96:497–505

    Article  Google Scholar 

  • Rousseau C, Belin E, Bove E, Fabre F, Berruyer R, Guillaumes J et al. (2013) High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17 (http://www.plantmethods.com/content/9/1/17)

  • Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Plümer L (2010) Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput Electron Agric 74:91–99

    Article  Google Scholar 

  • Sankaran S, Mishraa A, Ehsania R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Article  Google Scholar 

  • Schmitz A, Kiewnick S, Schlang J, Sikora RA (2004) Use of high resolutional digital thermography to detect Heterodera schachtii infestation in sugar beets. Commun Agric Appl Biol Sci 69:359–363

    PubMed  CAS  Google Scholar 

  • Scholes JD, Rolfe SA (2009) Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: a phenomics perspective. Funct Plant Biol 36:880–892

    Article  Google Scholar 

  • Spinelli F, Noferini M, Costa G (2006) Near infrared spectroscopy (NIRs): perspective of fire blight detection in asymptomatic plant material. In: Proceeding of 10th international workshop on fire blight. Acta Horticult 704:87–90

    Google Scholar 

  • Stafford JV (2000) Implementing precision agriculture in the 21st century. J Agric Eng Res 76:267–275

    Article  Google Scholar 

  • Steddom K, Bredehoeft MW, Khan M, Rush CM (2005) Comparison of visual and multispectral radiometric disease evaluations of Cercospora leaf spot of sugar beet. Plant Dis 89:153–158

    Article  Google Scholar 

  • Steiner U, Buerling K, Oerke EC (2008) Sensorik für einen präzisierten Pflanzenschutz. Gesunde Pflanzen 60:131–141

    Article  Google Scholar 

  • Stenzel I, Steiner U, Dehne HW, Oerke EC (2007) Occurrence of fungal leaf pathogens in sugar beet fields monitored with digital infrared thermography. In: Stafford JV (ed) Precision Agriculture ’07. Papers presented at the 6th European conference on precision agriculture. Wageningen Academic Publishers, pp 529–535

    Google Scholar 

  • Stoll M, Schultz HR, Baecker G, Berkelmann- Loehnertz B (2008) Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precision Agric 9:407–417

    Article  Google Scholar 

  • Thenkabail PS, Smith RB, De Pauw E (2000) Hyperspectral vegetation indices and their relationship with agricultural crop characteristics. Remote Sens Environ 71:158–182

    Article  Google Scholar 

  • Vadivambal R, Jayas DS (2011) Applications of thermal imaging in agriculture and food industry – a review. Food Bioprocess Technol 4:186–199

    Article  Google Scholar 

  • Von Witzke H, Noleppa S, Schwarz G (2008) Global agricultural market trends and their impacts on European agriculture. Working paper 84, Humboldt University Berlin. http://www.agrar.hu-berlin.de/struktur/institute/wisola/publ/wp. Accessed 28 June 2011

  • Waggoner PE, Aylor DE (2000) Epidemiology, a science of patterns. Annu Rev Phytopathol 38:1–24

    Article  Google Scholar 

  • West JS, Bravo C, Oberti R, Lemaire D, Moshou D, McCartney HA (2003) The potential of optical canopy measurement for targeted control of field crop diseases. Annu Rev Phytopathol 41:593–614

    Article  PubMed  CAS  Google Scholar 

  • West SJ, Bravo C, Oberti R, Moshou D, Ramon H, McCartney HA (2010) Detection of fungal diseases optically and pathogen inoculum by air sampling. In: Oerke EC, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection – the challenge and use of heterogeneity. Springer, Dordrecht, pp 135–150

    Chapter  Google Scholar 

  • Zhang M, Qin Z, Liu X, Ustin S (2003) Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Appl Earth Observation Geoinf 4:295–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich-Christian Oerke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oerke, EC., Mahlein, AK., Steiner, U. (2014). Proximal Sensing of Plant Diseases. In: Gullino, M., Bonants, P. (eds) Detection and Diagnostics of Plant Pathogens. Plant Pathology in the 21st Century, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9020-8_4

Download citation

Publish with us

Policies and ethics