The Ecological Niche: History and Recent Controversies

  • Arnaud PochevilleEmail author


In this chapter, we first trace the history of the concept of ecological niche and see how its meanings varied with the search for a theory of ecology. The niche concept has its roots in the Darwinian view of ecosystems that are structured by the struggle for survival and, originally, the niche was perceived as an invariant place within the ecosystem, that would preexist the assembly of the ecosystem. The concept then slipped towards a sense in which the niche, no longer a pre-existing ecosystem structure, eventually became a variable that would in turn have to be explained by the competitive exclusion principle and the coevolution of species. This concept, while more operational from an empirical point of view than the previous one, suffered from an ill-founded definition. A recent refoundation by Chase & Leibold enabled to overcome some of the definitional difficulties.

We then present how, in contemporary ecology, the niche concept is recruited to explain biodiversity and species coexistence patterns. In parallel, neutralist models, by successfully explaining some ecological patterns without resorting to explanations in terms of niche, have questioned the explanatory virtues of the niche concept.

After this presentation, it seems that the fortunes and misfortunes of the niche concept can be seen as a reflection of the difficulties of ecology to give birth to a theory that would be both predictive and explanatory.


Ecological niche Neutral theory Coexistence theories Competitive exclusion principle Scales 


  1. Abrams, P. (1983). The theory of limiting similarity. Annual Review of Ecology and Systematics, 14, 359–376.Google Scholar
  2. Ackermann, M., & Doebeli, M. (2004). Evolution of niche width and adaptive diversification. Evolution, 58, 2599–2612.PubMedGoogle Scholar
  3. Adler, P. B., HilleRisLambers, J., & Levine, J. M. (2007). A niche for neutrality. Ecology Letters, 10, 95–104.PubMedGoogle Scholar
  4. Adler, P. B., Ellner, S. P., & Levine, J. M. (2010). Coexistence of perennial plants: An embarrassment of niches. Ecology Letters, 13, 1019–1029.PubMedGoogle Scholar
  5. Alonso, D., Etienne, R. S., & McKane, A. J. (2006). The merits of neutral theory. Trends in Ecology & Evolution, 21, 451–457.Google Scholar
  6. Aristotle, & Jules Barthélemy Saint-Hilaire. (1883). Histoire des animaux d’Aristote. Paris: Hachette et cie., 1883.
  7. Baker, O. (2002). Interview with Steve Hubbell: Scientific American [WWW Document]. URL Accessed 5 June 2013.
  8. Banavar, J., & Maritan, A. (2007). The maximum relative entropy principle. arXiv Preprint Cond-mat/0703622, 2007.
  9. Banavar, J. R., Maritan, A., & Volkov, I. (2010). Applications of the principle of maximum entropy: From physics to ecology. Journal of Physics: Condensed Matter, 22, 063101.PubMedGoogle Scholar
  10. Beeravolu, C. R., Couteron, P., Pélissier, R., & Munoz, F. (2009). Studying ecological communities from a neutral standpoint: A review of models’ structure and parameter estimation. Ecological Modelling, 220, 2603–2610.Google Scholar
  11. Begon, M., Townsend, C. R. & Harper, J. L. (2009). Ecology: From individuals to ecosystems. Wiley.Google Scholar
  12. Bell, G. (2000). The distribution of abundance in neutral communities. The American Naturalist, 155, 606–617.PubMedGoogle Scholar
  13. Bell, G. (2001). Neutral macroecology. Science, 293, 2413–2418.PubMedGoogle Scholar
  14. Bell, G. (2003). The interpretation of biological surveys. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270, 2531–2542.Google Scholar
  15. Bell, G. (2005). The co-distribution of species in relation to the neutral theory of community ecology. Ecology, 86, 1757–1770.Google Scholar
  16. Bell, G., Lechowicz, M. J., & Waterway, M. (2001). The scale of local adaptation in forest plants. Special Publication-British Ecological Society, 14, 117–138.Google Scholar
  17. Bell, G., Lechowicz, M. J., & Waterway, M. J. (2006). The comparative evidence relating to functional and neutral interpretations of biological communities. Ecology, 87(6), 1378–1386.PubMedGoogle Scholar
  18. Bendall, S. C., Stewart, M. H., Menendez, P., George, D., Vijayaragavan, K., Werbowetski-Ogilvie, T., Ramos-Mejia, V., Rouleau, A., Yang, J., & Bossé, M. (2007). IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 448, 1015–1021.PubMedGoogle Scholar
  19. Bershad, A. K., Fuentes, M. A., & Krakauer, D. C. (2008). Developmental autonomy and somatic niche construction promotes robust cell fate decisions. Journal of Theoretical Biology, 254, 408–416.PubMedGoogle Scholar
  20. Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055.Google Scholar
  21. Bramson, M., Cox, J. T., & Durrett, R. (1996). Spatial models for species area curves. The Annals of Probability, 24, 1727–1751.Google Scholar
  22. Bramson, M., Cox, J. T., & Durrett, R. (1998). A spatial model for the abundance of species. The Annals of Probability, 26, 658–709.Google Scholar
  23. Brown, J. H. (1995). Macroecology. Chicago: University of Chicago Press.Google Scholar
  24. Brown, J. H., Stevens, G. C., & Kaufman, D. M. (1996). The geographic range: Size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics, 27, 597–623.Google Scholar
  25. Cadotte, M. W. (2004). Ecological niches: Linking classical and contemporary approaches. Biodiversity and Conservation, 13, 1791–1793.Google Scholar
  26. Case, T. J. (1981). Niche packing and coevolution in competition communities. PNAS, 78, 5021–5025.PubMedCentralPubMedGoogle Scholar
  27. Case, T. J. (1982). Coevolution in resource-limited competition communities. Theoretical Population Biology, 21, 69–91.Google Scholar
  28. Caswell, H. (1976). Community structure: A neutral model analysis. Ecological Monographs, 46, 327–354.Google Scholar
  29. Chase, J. M., & Leibold, M. A. (2003). Ecological niches: Linking classical and contemporary approaches. Chicago: University of Chicago Press.Google Scholar
  30. Chave, J. (2004). Neutral theory and community ecology. Ecology Letters, 7, 241–253.Google Scholar
  31. Chave, J. (2008). Spatial variation in tree species composition across tropical forests: Pattern and process. In W. Carson & S. Schnitzer (Eds.), Tropical forest community ecology (pp. 11–30). Oxford: Wiley Blackwell.Google Scholar
  32. Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366.Google Scholar
  33. Chesson, P., & Huntly, N. (1997). The roles of harsh and fluctuating conditions in the dynamics of ecological communities. The American Naturalist, 150, 519–553.PubMedGoogle Scholar
  34. Chesson, P., & Rees, M. (2007). Commentary: Resolving the biodiversity paradox. Ecology Letters, 10, 659–661.Google Scholar
  35. Clark, J. S. (2003). Uncertainty and variability in demography and population growth: A hierarchical approach. Ecology, 84, 1370–1381.Google Scholar
  36. Clark, J. S. (2009). Beyond neutral science. Trends in Ecology & Evolution, 24, 8–15.Google Scholar
  37. Clark, J. S., & McLachlan, J. S. (2003). Stability of forest biodiversity. Nature, 423, 635–638.PubMedGoogle Scholar
  38. Clark, J. S., Mohan, J., Dietze, M., & Ibanez, I. (2003). Coexistence: How to identify trophic trade-offs. Ecology, 84, 17–31.Google Scholar
  39. Clark, J. S., LaDeau, S., & Ibanez, I. (2004). Fecundity of trees and the colonization-competition hypothesis. Ecological Monographs, 74, 415–442.Google Scholar
  40. Clark, J. S., Dietze, M., Chakraborty, S., Agarwal, P. K., Ibanez, I., LaDeau, S., & Wolosin, M. (2007). Resolving the biodiversity paradox. Ecology Letters, 10, 647–659.PubMedGoogle Scholar
  41. Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Washington: Carnegie Institution of Washington.Google Scholar
  42. Colwell, R. K. (1992). Niche: A bifurcation in the conceptual lineage of the term. In E. F. Keller & E. A. Lloyd (Eds.), The keywords in evolutionary biology. Cambridge, MA: Harvard University Press.Google Scholar
  43. Connell, J. H. (1983). On the prevalence and relative importance of interspecific competition: Evidence from field experiments. American Naturalist, 122, 661–696.Google Scholar
  44. Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee effects in ecology and conservation. Environmental Conservation, 36, 80–85.Google Scholar
  45. Cowles, H. C. (1899). The ecological relations of the vegetation on the sand dunes of Lake Michigan. Chicago: The University of Chicago Press.Google Scholar
  46. Crooks, J. A., & Soulé, M. E. (2001). Lag times in population explosions of invasive species: Causes and implications. In O. T. Sandlund, P. J. Schei, & Å. Viken (Eds.), Invasive species and biodiversity management. Dordrecht: Springer.Google Scholar
  47. Daleo, P., Alberti, J., & Iribarne, O. (2009). Biological invasions and the neutral theory. Diversity and Distributions, 15, 547–553.Google Scholar
  48. Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life (1st ed.). London: John Murray.Google Scholar
  49. Darwin, C. R. (1872). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life (6th ed.). London: John Murray.Google Scholar
  50. Dawkins, R. (1982). The extended phenotype: The long reach of the gene. Oxford: Oxford University Press.Google Scholar
  51. Dawkins, R. (2004). Extended phenotype–but not too extended. A reply to Laland, Turner and Jablonka. Biology and Philosophy, 19(3), 377–96.Google Scholar
  52. Day, R. L., Laland, K. N., & Odling-Smee, F. J. (2003). Rethinking adaptation: The niche-construction perspective. Perspectives in Biology and Medicine, 46, 80–95.PubMedGoogle Scholar
  53. Derville, A. (1999). L’agriculture du nord au Moyen Age. Septentrion: Presses Univ.Google Scholar
  54. Dewar, R. C., & Porté, A. (2008). Statistical mechanics unifies different ecological patterns. Journal of Theoretical Biology, 251, 389–403.PubMedGoogle Scholar
  55. Dornelas, M., Connolly, S. R., & Hughes, T. P. (2006). Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80–82.PubMedGoogle Scholar
  56. Drake, J. A., Fuller, M., Zimmerman, C. R., & Gamarra, J. G. P. (2007). Emergence in ecological systems. In N. Rooney, K. S. McCann, & D. L. G. Noakes (Eds.), From energetics to ecosystems: The dynamics and structure of ecological systems (pp. 157–183). Dordrecht: Springer.Google Scholar
  57. Elton, C. S. (1927). Animal ecology. New York: The Macmillan Company.Google Scholar
  58. Engelbrecht, B. M., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T., Turner, B. L., & Hubbell, S. P. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447, 80–82.PubMedGoogle Scholar
  59. Fagerström, T., & Ågren, G. I. (1979). Theory for coexistence of species differing in regeneration properties. Oikos, 33, 1.Google Scholar
  60. Fargione, J., Brown, C. S., & Tilman, D. (2003). Community assembly and invasion: An experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences, 100, 8916–8920.Google Scholar
  61. Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. The Journal of Animal Ecology, 12, 42–58.Google Scholar
  62. Forbes, S. A. (1880). On some interactions of organisms. Illinois State Laboratory of Natural History Bulletin, 1, 3–17.Google Scholar
  63. Forbes, S. A. (1887). The lake as a microcosm. Bulletin of the Peoria Scientific Association.Google Scholar
  64. Gaffney, P. M. (1975). Roots of the niche concept. The American Naturalist, 109, 490.Google Scholar
  65. Gause, G. F. (1934). The struggle for existence. Baltimore: Williams & Wilkins.Google Scholar
  66. Gause, G. F. (1939, January). Discussion of the paper by Thomas Park, ‘analytical population studies in relation to general ecology’. American Midland Naturalist, 21(1), 235. doi: 10.2307/2420382.Google Scholar
  67. Gayon, J., & Veuille, M. (2001). The genetics of experimental populations: L’Heritier and Teisser’s population cages. In R. S. Singh, C. B. Krimbas, D. Paul, & J. Beatty (Eds.), Thinking about evolution: Historical, philosophical, and political perspectives (pp. 77–102). New York: Cambridge University Press.Google Scholar
  68. Gewin, V. (2006). Beyond neutrality—Ecology finds its niche. PLoS Biology, 4, e278.PubMedCentralPubMedGoogle Scholar
  69. Gilbert, B., & Lechowicz, M. J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. PNAS, 101, 7651–7656.PubMedCentralPubMedGoogle Scholar
  70. Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 7–26.Google Scholar
  71. Godfrey-Smith, P. (1998). Complexity and the function of mind in nature. Cambridge: Cambridge University Press.Google Scholar
  72. Gotelli, N. J., & Graves, G. R. (1996). Null models in ecology. Washington, DC: Smithsonian Institution Press.Google Scholar
  73. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London, Series B: Biological Sciences, 205, 581–598.Google Scholar
  74. Gravel, D., Canham, C. D., Beaudet, M., & Messier, C. (2006). Reconciling niche and neutrality: The continuum hypothesis. Ecology Letters, 9, 399–409.PubMedGoogle Scholar
  75. Griesemer, J. (1992). Niche: Historical perspectives. In E. F. Keller & E. A. Lloyd (Eds.), The keywords in evolutionary biology. Cambridge, MA: Harvard University Press.Google Scholar
  76. Grinnell, J. (1904). The origin and distribution of the chest-nut-backed chickadee. The Auk, 21, 364–382.Google Scholar
  77. Grinnell, J. (1917). The niche-relationships of the California Thrasher. The Auk, 34, 427–433.Google Scholar
  78. Grinnell, J. (1924). Geography and evolution. Ecology, 5, 225.Google Scholar
  79. Grinnell, J. (1928). Presence and absence of animals. University of California Chronicle, 30, 429–450.Google Scholar
  80. Grinnell, J., & Storer, T. I. (1924). Animal life in the Yosemite: An account of the mammals, birds, reptiles, and amphibians in a cross-section of the Sierra Nevada. Berkeley: University of California Press.Google Scholar
  81. Grinnell, J., & Swarth, H. S. (1913). An account of the birds and mammals of the San Jacinto area of southern California with remarks upon the behavior of geographic races on the margins of their habitats. Berkeley: University of California Press.Google Scholar
  82. Grubb, P. J. (1977). The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biological Reviews, 52, 107–145.Google Scholar
  83. Haeckel, E. H. P. A. (1874). Histoire de la création des êtres organisés d’après les lois naturelles. Paris: C. Reinwald et cie.Google Scholar
  84. Haegeman, B., & Loreau, M. (2008). Limitations of entropy maximization in ecology. Oikos, 117, 1700–1710.Google Scholar
  85. Haegeman, B., & Loreau, M. (2009). Trivial and non-trivial applications of entropy maximization in ecology: A reply to Shipley. Oikos, 118, 1270–1278.Google Scholar
  86. Haldane, J. B. S. (1957). The cost of natural selection. Journal of Genetics, 55, 511–524.Google Scholar
  87. Hardin, G. (1960). The competitive exclusion principle. Science, 131, 1292–1297.PubMedGoogle Scholar
  88. Hengeveld, R., & Haeck, J. (1981). The distribution of abundance. II. Models and implications. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series C, 84, 257–284.Google Scholar
  89. Hengeveld, R., & Haeck, J. (1982). The distribution of abundance. I. Measurements. Journal of Biogeography, 9, 303.Google Scholar
  90. Hopf, F. A., & Hopf, F. W. (1985). The role of the Allee effect in species packing. Theoretical Population Biology, 27, 27–50.Google Scholar
  91. Hopf, F. A., Valone, T. J., & Brown, J. H. (1993). Competition theory and the structure of ecological communities. Evolutionary Ecology, 7, 142–154.Google Scholar
  92. Hubbell, S. P. (1979). Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203, 1299–1309.PubMedGoogle Scholar
  93. Hubbell, S. P. (1997). A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs, 16, S9–S21.Google Scholar
  94. Hubbell, S. (2001). The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton: Princeton University Press.Google Scholar
  95. Hubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166–172.Google Scholar
  96. Hubbell, S. P. (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387–1398.PubMedGoogle Scholar
  97. Hubbell, S. P., He, F., Condit, R., Borda-de-Agua, L., Kellner, J., & ter Steege, H. (2008). How many tree species are there in the Amazon and how many of them will go extinct? Proceedings of the National Academy of Sciences, 105, 11498–11504.Google Scholar
  98. Huneman, P. (2012). Natural selection: A case for the counterfactual approach. Erkenntnis, 76, 171–194.Google Scholar
  99. Hurtt, G. C., & Pacala, S. W. (1995). The consequences of recruitment limitation: Reconciling chance, history and competitive differences between plants. Journal of Theoretical Biology, 176, 1–12.Google Scholar
  100. Hutchinson, G. E. (1941). Ecological aspects of succession in natural populations. The American Naturalist, 75, 406–418.Google Scholar
  101. Hutchinson, G. E. (1944). Limnological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplakton periodicity and chemical changes in lake waters. Ecology, 25, 3–26.Google Scholar
  102. Hutchinson, G. E. (1948). Circular causal systems in ecology. Annals of the New York Academy of Sciences, 50, 221–246.PubMedGoogle Scholar
  103. Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.Google Scholar
  104. Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145–159.Google Scholar
  105. Hutchinson, G. E. (1961). The paradox of the plankton. The American Naturalist, 95, 137–145.Google Scholar
  106. Hutchinson, G. E. (1978). An introduction to population ecology. New Haven: Yale University Press.Google Scholar
  107. Ives, A. R., & Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317, 58–62.PubMedGoogle Scholar
  108. Jeliazkov, A. (2013). Effets d’échelles dans les relations agriculture-environnement-biodiversité. Paris: Université Pierre et Marie Curie.Google Scholar
  109. Johnson, R. H. (1910). Determinate evolution in the color-pattern of the lady-beetles. Washington, WC: Carnegie Institution of Washington.Google Scholar
  110. Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19, 101–108.Google Scholar
  111. Julve, P. (2005). Écologie historique [WWW Document]. Accessed 19 Apr 2013.
  112. Kareiva, P. (1997). Why worry about the maturing of a science? Ecoforum discussions, 1997.
  113. Keddy, P. (1998). Null models in ecology. The Canadian Field-Naturalist, 112, 752–754.Google Scholar
  114. Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217, 624.PubMedGoogle Scholar
  115. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.Google Scholar
  116. Kingsland, S. E. (1985). Modeling nature. Chicago: University of Chicago Press.Google Scholar
  117. Kostitzin, V. A. (1935). Evolution de l’atmosphère: circulation organique: époques glaciaires, Exposés de biométrie et de statistique biologique. Paris: Hermann.Google Scholar
  118. Kraft, N. J., Valencia, R., & Ackerly, D. D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580–582.PubMedGoogle Scholar
  119. Krebs, C. J. (1992). Ecology: The experimental analysis of distribution and abundance. New York: HarperCollins College Publishers.Google Scholar
  120. L’Héritier, P., & Teissier, G. (1935). Recherches sur la concurrence vitale. Etude de populations mixtes de Drosophila melanogaster et de Drosophila funebris. Comptes Rendus de la Societe de Biologie, 118, 1396–1398.Google Scholar
  121. Lack, D. (1947). Darwin’s finches. Cambridge: CUP Archive.Google Scholar
  122. Laplane, L. (2013). Cancer stem cells: Ontology and therapies. Paris: Université Paris-Ouest Nanterre.Google Scholar
  123. Lavergne, S., Mouquet, N., Thuiller, W., & Ronce, O. (2010). Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics, 41, 321–350.Google Scholar
  124. Legendre, P., & Legendre, L. (2012). Numerical ecology. Amsterdam: Elsevier.Google Scholar
  125. Leibold, M. A. (1995). The niche concept revisited: Mechanistic models and community context. Ecology, 76, 1371–1382.Google Scholar
  126. Leigh, G., Jr. (1981). The average lifetime of a population in a varying environment. Journal of Theoretical Biology, 90, 213–239.PubMedGoogle Scholar
  127. Leigh, E. G. (2007). Neutral theory: A historical perspective. Journal of Evolutionary Biology, 20, 2075–2091.PubMedGoogle Scholar
  128. Lesne, A. (2012). Robust Modeling in Natural Sciences. In Annales de l’ISUP. Presented at the Les Journées de la Robustesse, Institut de statistique de l’Université de Paris, pp. 109–118.Google Scholar
  129. Levine, J. M., & HilleRisLambers, J. (2009). The importance of niches for the maintenance of species diversity. Nature, 461, 254–257.PubMedGoogle Scholar
  130. Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54, 421–431.Google Scholar
  131. Lewin, R. (1983). Santa Rosalia was a goat. Science, 221, 636–639.PubMedGoogle Scholar
  132. Lewontin, R. C. (1974). The genetic basis of evolutionary change. New York: Columbia University Press.Google Scholar
  133. Lewontin, R. C. (1983). Gene, organism and environment. In D. S. Bendall (Ed.), Evolution from molecules to men. Cambridge: Cambridge University Press.Google Scholar
  134. Li, L., & Xie, T. (2005). Stem cell niche: Structure and function. Annual Review of Cell and Developmental Biology, 21, 605–631.PubMedGoogle Scholar
  135. Longo, G., Montévil, M., & Kauffman, S. (2012). No entailing laws, but enablement in the evolution of the biosphere. GECCO Proceedings, 2012.
  136. Looijen, R. C. (1998). Holism and reductionism in biology and ecology: The mutual dependence of higher and lower level research programmes. Groningen: Rijksuniversiteit Groningen.Google Scholar
  137. Loreau, M., & Mouquet, N. (1999). Immigration and the maintenance of local species diversity. The American Naturalist, 154, 427–440.PubMedGoogle Scholar
  138. Lotka, A. J. (1924). Elements of physical biology. Baltimore: Williams & Wilkins.Google Scholar
  139. MacArhur, R. (1966). Note on Mrs. Pielou’s comments. Ecology, 47(6), 1074. doi: 10.2307/1935661.Google Scholar
  140. MacArthur, R. (1972). Geographical ecology: Patterns in the distribution of species. Princeton: Princeton University Press.Google Scholar
  141. MacArthur, R., & Levins, R. (1964). Competition, habitat selection, and character displacement in a patchy environment. Proceedings of the National Academy of Sciences of the United States of America, 51(6), 1207.PubMedCentralPubMedGoogle Scholar
  142. MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. American Naturalist, 101, 377–385.Google Scholar
  143. MacArthur, R. H., & Wilson, E. O. (1963). An equilibrium theory of insular zoogeography. Evolution, 17, 373–387.Google Scholar
  144. Margalef, R. (1968). Perspectives in ecological theory. Chicago: University of Chicago Press.Google Scholar
  145. May, R. M. (1975). Some Notes on Estimating the Competition Matrix, a. Ecology, 56, 737.Google Scholar
  146. McGill, B. J., Hadly, E. A., & Maurer, B. A. (2005). Community inertia of Quaternary small mammal assemblages in North America. PNAS, 102, 16701–16706.PubMedCentralPubMedGoogle Scholar
  147. McGill, B. J., Maurer, B. A., & Weiser, M. D. (2006). Empirical evaluation of neutral theory. Ecology, 87, 1411–1423.PubMedGoogle Scholar
  148. McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., & He, F. (2007). Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 995–1015.PubMedGoogle Scholar
  149. McIntosh, R. P. (1986). The background of ecology: Concept and theory. Cambridge: Cambridge University Press.Google Scholar
  150. Meszéna, G., Gyllenberg, M., Pásztor, L., & Metz, J. A. J. (2006). Competitive exclusion and limiting similarity: A unified theory. Theoretical Population Biology, 69(1), 68–87.PubMedGoogle Scholar
  151. Mikkelson, G. M. (2005). Niche-based vs. neutral models of ecological communities. Biology and Philosophy, 20, 557–566.Google Scholar
  152. Möbius, K. A. (1877). Die Auster und die Austernwirthschaft. Berlin: Verlag von Wiegandt, Hemple & Parey.Google Scholar
  153. Munoz, F., Couteron, P., Ramesh, B. R., & Etienne, R. S. (2007). Estimating parameters of neutral communities: From one single large to several small samples. Ecology, 88, 2482–2488.PubMedGoogle Scholar
  154. Munoz, F., Couteron, P., & Ramesh, B. R. (2008). Beta diversity in spatially implicit neutral models: A new way to assess species migration. The American Naturalist, 172, 116–127.PubMedGoogle Scholar
  155. Nee, S. (2005). The neutral theory of biodiversity: Do the numbers add up? Functional Ecology, 19, 173–176.Google Scholar
  156. Nee, S., Harvey, P. H., & May, R. M. (1991a). Lifting the veil on abundance patterns. Proceedings of the Royal Society of London, Series B: Biological Sciences, 243, 161–163.Google Scholar
  157. Nee, S., Read, A. F., Greenwood, J. J. D., & Harvey, P. H. (1991b). The relationship between abundance and body size in British birds. Nature, 351, 312–313.Google Scholar
  158. Neill, W. E. (1974). The community matrix and interdependence of the competition coefficients. American Naturalist, 108, 399–408.Google Scholar
  159. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton: Princeton University Press.Google Scholar
  160. Ohta, T. (1973). Slightly deleterious mutant substitutions in evolution. Nature, 246, 96–98.PubMedGoogle Scholar
  161. Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annual Review of Ecology and Systematics, 23, 263–286.Google Scholar
  162. Orzack, S. H., & Sober, E. (1993). A critical assessment of Levins’s the strategy of model building in population biology (1966). Quarterly Review of Biology, 68, 533–546.Google Scholar
  163. Orzack, S. H., & Sober, E. (2001). Adaptationism and optimality. Cambridge: Cambridge University Press.Google Scholar
  164. Pandolfi, J. M. (1996). Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: Constancy during global change. Paleobiology, 22, 152–176.Google Scholar
  165. Papayannopoulou, T., & Scadden, D. T. (2008). Stem-cell ecology and stem cells in motion. Blood, 111, 3923–3930.PubMedCentralPubMedGoogle Scholar
  166. Park, T. (1948). Experimental studies of interspecies competition. I. Competition between populations of the flour beetles, Tribolium confusum Duval and Tribolium castaneum Herbst. Ecological Monographs, 18, 265–308.Google Scholar
  167. Park, T. (1954). Experimental studies of interspecies competition II. Temperature, humidity, and competition in two species of Tribolium. Physiological Zoology, 27, 177–238.Google Scholar
  168. Peters, R. H. (1976). Tautology in evolution and ecology. American Naturalist, 110, 1–12.Google Scholar
  169. Pielou, E. C. (1975). Ecological diversity. New York: Wiley.Google Scholar
  170. Pielou, E. C. (1977). Mathematical ecology. New York: John Wiley & Sons.Google Scholar
  171. Pocheville, A. (2009). La niche écologique: histoire et controverses récentes. In T. Heams, P. Huneman, G. Lecointre, & M. SIlberstein (Eds.), Les Mondes Darwiniens. Paris: Syllepse.Google Scholar
  172. Pocheville, A. (2010). La Niche Ecologique: Concepts, Modèles, Applications. Thèse de doctorat, Ecole Normale Supérieure, Paris.Google Scholar
  173. Powell, K. (2005). Stem-cell niches: It’s the ecology, stupid! Nature, 435, 268–270.PubMedGoogle Scholar
  174. Preston, F. W. (1948). The commonness, and rarity, of species. Ecology, 29, 254–283.Google Scholar
  175. Psaila, B., & Lyden, D. (2009). The metastatic niche: Adapting the foreign soil. Nature Reviews Cancer, 9, 285–293.PubMedCentralPubMedGoogle Scholar
  176. Pueyo, S., He, F., & Zillio, T. (2007). The maximum entropy formalism and the idiosyncratic theory of biodiversity. Ecology Letters, 10, 1017–1028.PubMedCentralPubMedGoogle Scholar
  177. Ricklefs, R. E. (1979). Ecology (2nd ed.). New York: Chiron.Google Scholar
  178. Ricklefs, R. E. (2003). A comment on Hubbell’s zero-sum ecological drift model. Oikos, 100, 185–192.Google Scholar
  179. Ricklefs, R. E. (2006). The unified neutral theory of biodiversity: Do the numbers add up? Ecology, 87, 1424–1431.PubMedGoogle Scholar
  180. Rohde, K. (1979). A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist, 114(5), 648–71.Google Scholar
  181. Rohde, K. (2005). Nonequilibrium ecology. Cambridge: Cambridge University Press.Google Scholar
  182. Root, R. B. (1967). The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs, 37, 317–350.Google Scholar
  183. Roughgarden, J. (1972). Evolution of niche width. American Naturalist, 106, 683–718.Google Scholar
  184. Roughgarden, J. (1976). Resource partitioning among competing species—A coevolutionary approach. Theoretical Population Biology, 9, 388–424.PubMedGoogle Scholar
  185. Salisbury, E. J. (1929). The biological equipment of species in relation to competition. Journal of Ecology, 17, 197–222.Google Scholar
  186. Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441, 1075–1079.PubMedGoogle Scholar
  187. Schoener, T. W. (1974). Some methods for calculating competition coefficients from resource-utilization spectra. American Naturalist, 108, 332–340.Google Scholar
  188. Schoener, T. W. (1983a). Field experiments on interspecific competition. American Naturalist, 122, 240–285.Google Scholar
  189. Schoener, T. W. (1983b). Rate of species turnover decreases from lower to higher organisms: A review of the data. Oikos, 41, 372.Google Scholar
  190. Schoener, T. W. (1986). Resource partitioning. In J. Kikkawa & D. J. Anderson (Eds.), Community ecology: Pattern and process (pp. 91–126). Melbourne: Blackwell Scientific Publications.Google Scholar
  191. Schoener, T. W. (1989). The ecological niche. In J. M. Cherrett (Ed.), Ecological concepts: The contribution of ecology to an understanding of the natural world, symposium British ecological society. Cambridge: Blackwell Scientific Publications.Google Scholar
  192. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7.PubMedGoogle Scholar
  193. Schofield, R. (1983). The stem cell system. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 37, 375.Google Scholar
  194. Semper, K. (1881). The natural conditions of existence as they affect animal life. London: C. Kegan Paul & Co.Google Scholar
  195. Shipley, B. (2009). Limitations of entropy maximization in ecology: A reply to Haegeman and Loreau. Oikos, 118, 152–159.Google Scholar
  196. Shipley, B., Vile, D., & Garnier, É. (2006). From plant traits to plant communities: A statistical mechanistic approach to biodiversity. Science, 314, 812–814.PubMedGoogle Scholar
  197. Simberloff, D. (1978). Using island biogeographic distributions to determine if colonization is stochastic. American Naturalist, 112, 713–726.Google Scholar
  198. Sinervo, B., & Lively, C. M. (1996). The rock-paper-scissors game and the evolution of alternative male strategies. Nature, 380, 240–243.Google Scholar
  199. Stauffer, R. C. (1975). Charles Darwin’s natural selection: Being the second part of his big species book written from 1856 to 1858. Cambridge: Cambridge University Press.Google Scholar
  200. Steeg, P. S. (2005). Cancer biology: Emissaries set up new sites. Nature, 438, 750–751.PubMedGoogle Scholar
  201. Strong, D. R. (1980). Null hypotheses in ecology. Synthese, 43, 271–285.Google Scholar
  202. Strong, D. R., Lawton, J. H., & Sir, R. S. (1984). Insects on plants: Community patterns and mechanisms. Cambridge, MA: Harvard University Press.Google Scholar
  203. Tansley, A. G. (1917). On competition between Galium saxatile L.(G. hercynicum Weig.) and Galium sylvestre Poll.(G. asperum Schreb.) on different types of soil. The Journal of Ecology, 5, 173–179.Google Scholar
  204. Taylor, W. P. (1916). The status of the beavers of western North America with a consideration of the factors in their speciation…. Berkeley: University of California.Google Scholar
  205. Terborgh, J., Foster, R. B., & Nunez, P. (1996). Tropical tree communities: A test of the nonequilibrium hypothesis. Ecology, 77, 561–567.Google Scholar
  206. Tilman, D. (1982). Resource competition and community structure. Princeton: Princeton University Press.Google Scholar
  207. Tilman, D. (1987). The importance of the mechanisms of interspecific competition. The American Naturalist, 129, 769–774.Google Scholar
  208. Turelli, M. (1980). Niche overlap and invasion of competitors in random environments. II. The effects of demographic stochasticity. In W. Jäger, H. Rost, & P. Tăutu (Eds.), Biological growth and spread: Mathematical theories and applications: Proceedings of a conference held at Heidelberg, July 16–21, 1979. New York: Springer.Google Scholar
  209. Turner, M. G., Gardner, R. H., & O’Neill, R. V. (2001). Landscape ecology in theory and practice: Pattern and process. New York: Springer.Google Scholar
  210. Van Beneden, P. J. (1878). Les Commensaux et les parasites dans le règne animal. Paris: G. Baillière.Google Scholar
  211. Vandermeer, J. H. (1972). Niche theory. Annual Review of Ecology and Systematics, 3, 107–132.Google Scholar
  212. Volkov, I., Banavar, J. R., Hubbell, S. P., & Maritan, A. (2003). Neutral theory and relative species abundance in ecology. Nature, 424, 1035–1037.PubMedGoogle Scholar
  213. Volkov, I., Banavar, J. R., Maritan, A., & Hubbell, S. P. (2004). The stability of forest biodiversity. Nature, 427(6976), 696–696.PubMedGoogle Scholar
  214. Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, 118, 558–560.Google Scholar
  215. Von Liebig, J. (1841). Traité de Chimie Organique. Bruxelles: A. Wahlen.Google Scholar
  216. von Linné, C. (1972). L’équilibre de la nature. Paris: Vrin.Google Scholar
  217. Watt, F. M., & Hogan, B. L. (2000). Out of Eden: Stem cells and their niches. Science, 287, 1427–1430.PubMedGoogle Scholar
  218. Watterson, G. A. (1974). Models for the logarithmic species abundance distributions. Theoretical Population Biology, 6, 217–250.PubMedGoogle Scholar
  219. Whittaker, R. H., Levin, S. A., & Root, R. B. (1973). Niche, habitat, and ecotope. American Naturalist, 107, 321–338.Google Scholar
  220. Williamson, M. H. (1972). The analysis of biological populations. London: Edward Arnold.Google Scholar
  221. Wilson, E. O., & MacArthur, R. H. (1967). The theory of island biogeography. Princeton: Princeton University Press.Google Scholar
  222. Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97.PubMedCentralPubMedGoogle Scholar
  223. Zhang, D.-Y., & Lin, K. (1997). The effects of competitive asymmetry on the rate of competitive displacement: How robust is Hubbell’s community drift model? Journal of Theoretical Biology, 188, 361–367.Google Scholar
  224. Zhou, S.-R., & Zhang, D.-Y. (2008). A nearly neutral model of biodiversity. Ecology, 89, 248–258.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of SydneySydneyAustralia

Personalised recommendations