Skip to main content

Applicability of Time-Averaged Holography for Reliability Assessment of Chemical Sensors

  • Conference paper
  • First Online:
  • 714 Accesses

Abstract

This paper investigates applicability of time-averaged holography for reliability assessment of chemical sensors operating in dynamic mode. Time-averaged holography, which is an experimental method for quantitative registration of surface oscillations, is applied for computational results of a paradigmatic cantilever chemical sensor model for various excitation parameters. It is shown that even a harmonic excitation of a non-linear microsystem may result into an unpredictable chaotic motion. The results show that a straightforward interpretation of time-averaged holographic interferograms of chemical sensors can be misguiding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krishna Mohan N, Rastogi PK (2009) Recent developments in interferometry for microsystems metrology. Opt Lasers Eng 47(2):199–202

    Article  Google Scholar 

  2. Kujawinska M (2002) Modern optical measurement station for micro-materials and micro-elements studies. Sens Actuators A Phys 99(1–2):144–153

    Article  Google Scholar 

  3. Salbut L, Kacperski J, Styk AR, Jozwik M, Gorecki C, Urey H, Jacobelli A, Dean T (2004) Interferometric methods for static and dynamic characterizations of micromembranes for sensing functions. In: Proceedings of SPIE, photonics Europe 2004, optical micro- and nanometrology in manufacturing technology, MEMS characterization I, Tome 5458, 29–30 April 2004, pp 16–24

    Google Scholar 

  4. Yang L, Schuth M, Thomas D, Wang Y, Voesing F (2009) Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem. Opt Lasers Eng 47(2):252–258

    Article  Google Scholar 

  5. De Pasquale G (2013) Experimental analysis of viscous and material damping in microstructures through the interferometric microscopy technique with climatic chamber. J Sound Vib 332(18):4103–4121

    Article  ADS  Google Scholar 

  6. Krupa K, Gorecki C, Jozwicki R, Jozwik M, Andrei A (2011) Interferometric study of reliability of microcantilevers driven by AlN sandwiched between two metal layers. Sens Actuators A Phys 171(2):306–316

    Article  Google Scholar 

  7. Koev ST, Bentley WE, Ghodssi R (2010) Interferometric readout of multiple cantilever sensors in liquid samples. Sens Actuators B Chem 146(1):245–252

    Article  Google Scholar 

  8. Asundi A (2011) Digital holography for MEMS and microsystem metrology. Wiley, Chichester/Hoboken

    Book  Google Scholar 

  9. Pedrini G, Gaspar J, Paul O, Osten W (2009) Measurement of in-plane deformations of microsystems by digital holography and speckle interferometry. Chin Opt Lett 7(12):1109–1112

    Article  Google Scholar 

  10. Seebacher S, Osten W, Baumbach T, Jptner W (2001) The determination of material parameters of microcomponents using digital holography. Opt Lasers Eng 36(2):103–126

    Article  Google Scholar 

  11. Singh VR, Hedge G, Asundi AK (2006) Digital in-line holography for dynamic micrometrology. In: Proceedings of the optical micro- and nanometrology in manufacturing technology, Strasbourg, 5–7 April 2006, pp 618803–618803-9

    Google Scholar 

  12. Singh VR, Miao J, Wang Z, Hegde G, Asundi A (2007) Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography. Opt Commun 280(2):285–290

    Article  ADS  Google Scholar 

  13. Paul Kumar U, Krishna Mohan N, Kothiyal M (2011) Measurement of static and vibrating microsystems using microscopic TV holography. Opt Int J Light Electron Opt 122(1):49–54

    Article  Google Scholar 

  14. Zhang W-M, Tabata O, Tsuchiya T, Meng G (2011) Noise-induced chaos in the electro-statically actuated MEMS resonators. Phys Lett A 375(32):2903–2910

    Article  MATH  ADS  Google Scholar 

  15. Siewe MS, Hegazy UH (2011) Homoclinic bifurcation and chaos control in MEMS resonators. Appl Math Model 35(12):5533–5552

    Article  MATH  MathSciNet  Google Scholar 

  16. Haghighi HS, Markazi AH (2010) Chaos prediction and control in MEMS resonators. Commun Nonlinear Sci Numer Simul 15(10):3091–3099

    Article  ADS  Google Scholar 

  17. Lin W, Qiao N, Yuying H (2006) Bifurcations and chaos in a forced cantilever system with impacts. J Sound Vib 296(4–5):1068–1078

    Article  ADS  Google Scholar 

  18. Battiston F, Ramseyer J-P, Lang H, Baller M, Gerber C, Gimzewski J, Meyer E, Gntherodt H-J (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens Actuators B Chem 77(1–2):122–131

    Article  Google Scholar 

  19. Vest CM (1979) Holographic interferometry. Wiley series in pure and applied optics. Wiley, New York

    Google Scholar 

  20. Voiculescu I, Zaghloul M, McGill R, Houser E, Fedder G (2005) Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons. IEEE Sens J 5(4):641–647

    Article  Google Scholar 

  21. Ragulskis M, Sanjuan M, Saunoriene L (2007) Applicability of time-average moire techniques for chaotic oscillations. Phys Rev E 76(3):036208

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Palevičius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Palevičius, P., Ragulskis, M., Palevičius, A. (2015). Applicability of Time-Averaged Holography for Reliability Assessment of Chemical Sensors. In: Bonča, J., Kruchinin, S. (eds) Nanotechnology in the Security Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9005-5_17

Download citation

Publish with us

Policies and ethics