Crystal anisotropy and tensors



This chapter shows why the anisotropy of crystals requires a representation of their physical properties by tensors, and defines them. It then shows how the symmetry of a given crystal (its point group) influences the form of these material tensors. Curie’s and Neumann’s principles and their application to the tensor properties of crystals are presented in Sect. 9.5.


Transformation Matrix Point Group Orthonormal Frame Axis System Symmetry Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.L. Spain, in Chemistry and Physics of Carbon, vol. 8, ed. by P.L. Walker (Marcel Dekker Publisher, New York, 1973), pp. 130–131Google Scholar
  2. 2.
    D.E. Sands, Vectors and Tensors in Crystallography (Dover Publications, Mineola, New York, 1995)Google Scholar
  3. 3.
    L. Schwartz, Les tenseurs (Hermann, Paris, 1975)Google Scholar
  4. 4.
    F.G. Fumi, Physical properties of crystals: the direct inspection method, Acta Crystallographica 5, 44–48 (1952)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, case 115, 4 place JussieuUniversité Pierre et Marie CurieParisFrance
  2. 2.Laboratoire Matériaux et Phénomènes Quantiques, Bâtiment Condorcet, case 7021Université Paris Diderot-Paris 7Paris CedexFrance
  3. 3.Grenoble-INP et Institut Néel du CNRS, B.P. 166Université Grenoble-AlpesGrenobleFrance

Personalised recommendations