Advertisement

Space Groups

Chapter
  • 2.1k Downloads

Abstract

After showing how the space groups are constructed, this chapter aims at enabling the reader to understand what the denomination of a given space group contains, and to efficiently use volume A of the International Tables for Crystallography. This volume lists all the space groups and gives many of their properties. The last section shows some examples of space groups.

Keywords

Point Group Equivalent Position Translation Vector Symmetry Operation Symmetry Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. 1.
    A. Authier, The Reciprocal Lattice, International Union of Crystallography, Teaching Pamphlets (1981)Google Scholar
  2. 2.
    C.A Taylor, A Non-mathematical Introduction to X-ray Crystallography, International Union of Crystallography, Teaching Pamphlets (2001); http://www.iucr.org/_data/assets/pdf_file/0008/3050/1.pdf
  3. 3.
    J.P. Glusker, Elementary X-ray Diffraction for Biologists, International Union of Crystallography, Teaching Pamphlets (2001); http://www.iucr.org/_data/assets/pdf_file/0008/14399/15.pdf
  4. 4.
    J.P. Glusker, K.N. Trueblood, Crystal Structure Analysis: A Primer (Oxford University Press, 1985)Google Scholar

References

  1. 1.
    Th. Hahn (ed.), International Tables for Crystallography, vol. A, Spacegroup Symmetry, 5th edn. (Kluwer Academic Publishers, Dordrecht, 2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, case 115, 4 place JussieuUniversité Pierre et Marie CurieParisFrance
  2. 2.Laboratoire Matériaux et Phénomènes Quantiques, Bâtiment Condorcet, case 7021Université Paris Diderot-Paris 7Paris CedexFrance
  3. 3.Grenoble-INP et Institut Néel du CNRS, B.P. 166Université Grenoble-AlpesGrenobleFrance

Personalised recommendations