Skip to main content

Processing and Ageing in the Atmosphere

  • Chapter
  • First Online:

Abstract

Transport through the atmosphere exposes mineral dust to a number of processes that alter its physicochemical properties, which in turn affects its direct and indirect impacts on climate. In this chapter, we review the physical and chemical processes that alter dust properties and their impacts on dust’s radiative properties, cloud condensation nucleus activity, morphology, nutrient and trace element solubility and the impacts of heterogeneous chemistry on dust surfaces on atmospheric composition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilar-Islas AM, Wu JF, Rember R, Johansen AM, Shank LM (2010) Dissolution of aerosol-derived iron in seawater: leach solution chemistry, aerosol type, and colloidal iron fraction. Mar Chem 120:25–33

    Article  Google Scholar 

  • Al-Hosney HA, Grassian VH (2004) Carbonic acid: an important intermediate in the surface chemistry of calcium carbonate. J Am Chem Soc 126:8068–8069

    Article  Google Scholar 

  • Arimoto R, Ray BJ, Lewis NF, Tomza U, Duce RA (1997) Mass-particle size distributions of atmospheric dust and the dry deposition of dust to the remote ocean. J Geophys Res 102:15867–15874

    Article  Google Scholar 

  • Baker AR, Croot PL (2010) Atmospheric and marine controls on aerosol iron solubility in seawater. Mar Chem 120:4–13

    Article  Google Scholar 

  • Baker AR, Jickells TD (2006) Mineral particle size as a control on aerosol iron solubility. Geophys Res Lett 33, L17608. doi:10.1029/2006GL026557

    Article  Google Scholar 

  • Baker AR, Jickells TD, Witt M, Linge KL (2006) Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar Chem 98:43–58

    Article  Google Scholar 

  • Bartels-Rausch T, Brigante M, Elshorbany YF, Ammann M, D’Anna B, George C et al (2010) Humic acid in ice photo-enhanced conversion of nitrogen dioxide into nitrous acid. Atmos Environ 44:5443–5450

    Article  Google Scholar 

  • Bernard J, Seidl M, Mayer E, Loerting T (2012) Formation and stability of bulk carbonic acid (H2CO3) by protonation of tropospheric calcite. Chemphyschem 13:3087–3091

    Article  Google Scholar 

  • Betzer PR, Carder KL, Duce RA, Merrill JT, Tindale NW, Uematsu M et al (1988) Long-range transport of giant mineral aerosol particles. Nature 336:568–571

    Article  Google Scholar 

  • Bullard JE, McTainsh GH, Pudmenzky C (2004) Aeolian abrasion and modes of fine particle production from natural red dune sands: an experimental study. Sedimentology 51:1103–1125

    Article  Google Scholar 

  • Carlos-Cuellar S, Li P, Christensen AP, Krueger BJ, Burrichter C, Grassian VH (2003) Heterogeneous uptake kinetics of volatile organic compounds on oxide surfaces using a Knudsen cell reactor: adsorption of acetic acid, formaldehyde, and methanol on α-Fe2O3, α-Al2O3, and SiO2. J Phys Chem A 107:4250–4261

    Article  Google Scholar 

  • Chen Y, Siefert RL (2004) Seasonal and spatial distributions and dry deposition fluxes of atmospheric total and labile iron over the tropical and subtropical North Atlantic Ocean. J Geophys Res-Atmos 109, D09305. doi:10.1029/2003JD003958

    Google Scholar 

  • Chen HH, Kong LD, Chen JM, Zhang RY, Wang L (2007) Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures. Environ Sci Technol 41:6484–6490

    Article  Google Scholar 

  • Chiapello I, Bergametti G, Chatenet B, Bousquet P, Dulac F, Santos Soares E (1997) Origins of African dust transported over the northeastern tropical Atlantic. J Geophys Res 102:13701–13709

    Article  Google Scholar 

  • Crumeyrolle S, Gomes L, Tulet P, Matsuki A, Schwarzenboeck A, Crahan K (2008) Increase of the aerosol hygroscopicity by cloud processing in a mesoscale convective system: a case study from the AMMA campaign. Atmos Chem Phys 8:6907–6924

    Article  Google Scholar 

  • Cwiertny DM, Baltrusaitis J, Hunter GJ, Laskin A, Scherer MM, Grassian VH (2008) Characterization and acid-mobilization study of iron-containing mineral dust source materials. J Geophys Res 113, D05202. doi:10.1029/2007JD009332

    Google Scholar 

  • Desboeufs KV, Losno R, Colin JL (2001) Factors influencing aerosol solubility during cloud processes. Atmos Environ 35:3529–3537

    Article  Google Scholar 

  • Dupart Y, King SM, Nekat B, Nowak A, Wiedensohler A, Herrmann H et al (2012) Mineral dust photochemistry induces nucleation events in the presence of SO2. Proc Natl Acad Sci U S A 109:20842–20847

    Article  Google Scholar 

  • Erel Y, Pehkonen SO, Hoffmann MR (1993) Redox chemistry of iron in fog and stratus clouds. J Geophys Res 98:18423–18434

    Article  Google Scholar 

  • Finlayson-Pitts BJ, Wingen LM, Sumner AL, Syomin D, Ramazan KA (2003) The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys Chem Chem Phys 5:223–242

    Article  Google Scholar 

  • Formenti P, Schütz L, Balkanski Y, Desboeufs K, Ebert M, Kandler K et al (2011) Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos Chem Phys 11:8231–8256

    Article  Google Scholar 

  • Gibson ER, Hudson PK, Grassian VH (2006) Physicochemical properties of nitrate aerosols: implications for the atmosphere. J Phys Chem A 110:11785–11799

    Article  Google Scholar 

  • Gierlus KM, Laskina O, Abernathy TL, Grassian VH (2012) Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol. Atmos Environ 46:125–130

    Article  Google Scholar 

  • Glaccum RA, Prospero JM (1980) Saharan aerosols over the tropical North Atlantic – mineralogy. Mar Geol 37:295–321

    Article  Google Scholar 

  • Guest CA, Schulze DG, Thompson IA, Huber DM (2002) Correlating manganese X-ray absorption near-edge structure spectra with extractable soil manganese. Soil Sci Soc Am J 66:1172–1181

    Article  Google Scholar 

  • Guieu C, Bonnet S, Wagener T, Loye-Pilot MD (2005) Biomass burning as a source of dissolved iron to the open ocean? Geophys Res Lett 32, L19608. doi:10.1029/2005GL022962

    Article  Google Scholar 

  • Gustafsson RJ, Orlov A, Griffiths PT, Cox RA, Lambert RM (2006) Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. Chem Commun 37:3936–3938

    Google Scholar 

  • Hadjiivanov K, Knozinger H (2000) Species formed after NO adsorption and NO + O2 co-adsorption on TiO2: an FTIR spectroscopic study. Phys Chem Chem Phys 2:2803–2806

    Article  Google Scholar 

  • Hanisch F, Crowley JN (2001) Heterogeneous reactivity of gaseous nitric acid on Al2O3, CaCO3, and atmospheric dust samples: a Knudsen cell study. J Phys Chem A 105:3096–3106

    Article  Google Scholar 

  • Hanisch F, Crowley JN (2003) Ozone decomposition on Saharan dust: an experimental investigation. Atmos Chem Phys 3:119–130

    Article  Google Scholar 

  • Ito A (2013) Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean. Global Biogeochem Cycles 27:1–10. doi:10.1029/2012GB004378

    Article  Google Scholar 

  • Johnson MS, Meskhidze N, Solmon F, Gasso S, Chuang PY, Gaiero DM et al (2010) Modeling dust and soluble iron deposition to the South Atlantic Ocean. J Geophys Res 115, D15202. doi:10.1029/2009JD013311

    Article  Google Scholar 

  • Journet E, Desboeufs KV, Caquineau S, Colin JL (2008) Mineralogy as a critical factor of dust iron solubility. Geophys Res Lett 35, L07805. doi:10.1029/2007GL031589

    Article  Google Scholar 

  • Kim J-S, Park K (2012) Atmospheric aging of Asian dust particles during long range transport. Aerosol Sci Tech 46:913–924

    Article  Google Scholar 

  • Kulmala M, Pirjola U, Makela JM (2000) Stable sulphate clusters as a source of new atmospheric particles. Nature 404:66–69

    Article  Google Scholar 

  • Lee SH, Murphy DM, Thomson DS, Middlebrook AM (2002) Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta SuperSite Project: focus on organic/sulfate, lead, soot, and mineral particles. J Geophys Res-Atmos 107:4003. doi:10.1029/2000JD000011

    Article  Google Scholar 

  • Li P, Perreau KA, Covington E, Song CH, Carmichael GR, Grassian VH (2001) Heterogeneous reactions of volatile organic compounds on oxide particles of the most abundant crustal elements: surface reactions of acetaldehyde, acetone, and propionaldehyde on SiO2, Al2O3, Fe2O3, TiO2, and CaO. J Geophys Res-Atmos 106:5517–5529

    Article  Google Scholar 

  • Liu Y, Ma J, He H (2010) Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study. Atmos Chem Phys 10:10335–10344

    Article  Google Scholar 

  • Ma J, Liu Y, He H (2011) Heterogeneous reactions between NO2 and anthracene adsorbed on SiO2 and MgO. Atmos Environ 45:917–924

    Article  Google Scholar 

  • Ma Q, Liu Y, Liu C, He H (2012) Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles. Phys Chem Chem Phys 14:8403–8409

    Article  Google Scholar 

  • Mackie DS, Boyd PW, Hunter KA, McTainsh GH (2005) Simulating the cloud processing of iron in Australian dust: pH and dust concentration. Geophys Res Lett 32, L06809. doi:10.1029/2004GL022122

    Article  Google Scholar 

  • Mackie DS, Peat JM, McTainsh GH, Boyd PW, Hunter KA (2006) Soil abrasion and eolian dust production: implications for iron partitioning and solubility. Geochem Geophys Geosyst 7, Q12Q03. doi:10.1029/2006GC001404

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD et al (2005) The atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19, GB4025. doi:10.1029/2004GB002402

    Google Scholar 

  • Maring H, Savoie DL, Izaguirre MA, Custals L, Reid JS (2003) Mineral dust aerosol size distribution change during atmospheric transport. J Geophys Res 108:8592. doi:10.1029/2002JD002536

    Article  Google Scholar 

  • Meskhidze N, Chameides WL, Nenes A, Chen G (2003) Iron mobilization in mineral dust: can anthropogenic SO2 emissions affect ocean productivity? Geophys Res Lett 30:2085. doi:10.1029/2003GL018035

    Article  Google Scholar 

  • Morton P, Landing WM, Hsu SC, Milne A, Aguilar-Islas AM, Baker AR et al (2013) Methods for sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnol Oceanogr-Methods 11:62–78

    Article  Google Scholar 

  • Ndour M, Conchon P, D’Anna B, Ka O, George C (2009) Photochemistry of mineral dust surface as a potential atmospheric renoxification process. Geophys Res Lett 36, L05816. doi:10.1029/2008GL036662

    Article  Google Scholar 

  • Nenes A, Krom MD, Mihalopoulos N, Van Cappellen P, Shi Z, Bougiatioti A et al (2011) Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans. Atmos Chem Phys 11:6265–6272

    Article  Google Scholar 

  • Nicolas M, Ndour M, Ka O, D’Anna B, George C (2009) Photochemistry of atmospheric dust: ozone decomposition on illuminated titanium dioxide. Environ Sci Technol 43:7437–7442

    Article  Google Scholar 

  • Pehkonen SO, Siefert R, Erel Y, Webb S, Hoffmann MR (1993) Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic-compounds. Environ Sci Technol 27:2056–2062

    Article  Google Scholar 

  • Potter RM, Rossman GR (1979) The manganese- and iron-oxide mineralogy of desert varnish. Chem Geol 25:79–94

    Article  Google Scholar 

  • Prospero JM, Nees RT, Uematsu M (1987) Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J Geophys Res 92:14723–14731

    Article  Google Scholar 

  • Ramazan KA, Wingen LM, Miller Y, Chaban GM, Gerber RB, Xantheas SS et al (2006) New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes. J Phys Chem A 110:6886–6897

    Article  Google Scholar 

  • Reid JS, Jonsson HH, Maring HB, Smirnov A, Savoie DL, Cliff SS et al (2003) Comparison of size and morphological measurements of coarse mode dust particles from Africa. J Geophys Res 108:8593. doi:10.1029/2002JD002485

    Article  Google Scholar 

  • Rubasinghege G, Grassian VH (2009) Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces. J Phys Chem A 113:7818–7825

    Article  Google Scholar 

  • Rubasinghege G, Grassian VH (2013) Role(s) of adsorbed water in the surface chemistry of environmental interfaces. Chem Commun 30:3071–3094

    Google Scholar 

  • Rubasinghege G, Lentz RW, Scherer MM, Grassian VH (2010) Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution. Proc Natl Acad Sci U S A 107:6628–6633

    Article  Google Scholar 

  • Russell LM, Maria SF, Myneni SCB (2002) Mapping organic coatings on atmospheric particles. Geophys Res Lett 29:1779. doi:10.1029/2002GL014874

    Google Scholar 

  • Saliba NA, Mochida M, Finlayson-Pitts BJ (2000) Laboratory studies of sources of HONO in polluted urban atmospheres. Geophys Res Lett 27:3229–3232

    Article  Google Scholar 

  • Schulz M, Balkanski YJ, Guelle W, Dulac F (1998) Role of aerosol size distribution and source location in a three-dimensional simulation of a Saharan dust episode tested against satellite-derived optical thickness. J Geophys Res-Atmos 103:10579–10592

    Article  Google Scholar 

  • Sedwick PN, Sholkovitz ER, Church TM (2007) Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem Geophys Geosyst 8, Q10Q06. doi:10.1029/2007GC001586

    Article  Google Scholar 

  • Shi Z, Krom MD, Bonneville S, Baker AR, Jickells TD, Benning LG (2009) Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing. Environ Sci Technol 43:6592–6596

    Article  Google Scholar 

  • Shi Z, Bonneville S, Krom MD, Carslaw KS, Jickells TD, Baker AR et al (2011) Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing. Atmos Chem Phys 11:995–1007

    Article  Google Scholar 

  • Sholkovitz ER, Sedwick PN, Church TM (2009) Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: empirical estimates for island sites in the North Atlantic. Geochim Cosmochim Acta 73:3981–4003

    Article  Google Scholar 

  • Sholkovitz ER, Sedwick PN, Church TM, Baker AR, Powell CF (2012) Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim Cosmochim Acta 89:173–189

    Article  Google Scholar 

  • Siefert RL, Pehkonen SO, Erel Y, Hoffmann MR (1994) Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids. Geochim Cosmochim Acta 58:3271–3279

    Article  Google Scholar 

  • Spokes LJ, Jickells TD (1996) Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater. Aquat Geochem 1:355–374

    Article  Google Scholar 

  • Spokes LJ, Jickells TD, Lim B (1994) Solubilisation of aerosol trace metals by cloud processing: a laboratory study. Geochim Cosmochim Acta 58:3281–3287

    Article  Google Scholar 

  • Styler SA, Donaldson DJ (2012) Heterogeneous photochemistry of oxalic acid on Mauritanian sand and Icelandic volcanic ash. Environ Sci Technol 46:8756–8763

    Article  Google Scholar 

  • Sullivan RC, Moore MJK, Petters MD, Kreidenweis SM, Roberts GC, Prather KA (2009) Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos Chem Phys 9:3303–3316

    Article  Google Scholar 

  • Sullivan RC, Petters MD, DeMott PJ, Kreidenweis SM, Wex H, Niedermeier D et al (2010) Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos Chem Phys 10:11471–11487

    Article  Google Scholar 

  • Takeuchi M, Deguchi J, Sakai S, Anpo M (2010) Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders. Appl Catal B-Environ 96:218–223

    Article  Google Scholar 

  • Theodosi C, Markaki Z, Mihalopoulos N (2010) Iron speciation, solubility and temporal variability in wet and dry deposition in the Eastern Mediterranean. Mar Chem 120:100–107

    Article  Google Scholar 

  • Usher CR, Al-Hosney H, Carlos-Cuellar S, Grassian VH (2002) A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles. J Geophys Res-Atmos 107:4713. doi:10.1029/2002JD002051

    Article  Google Scholar 

  • Usher CR, Michel AE, Grassian VH (2003) Reactions on mineral dust. Chem Rev 103(12):4883–4939

    Article  Google Scholar 

  • Wang W-G, Ge M-F, Sun Q (2011) Heterogeneous uptake of hydrogen peroxide on mineral oxides. Chin J Chem Phys 24:515–520

    Article  Google Scholar 

  • Witt MLI, Mather TA, Baker AR, de Hoog C-J, Pyle DM (2010) Atmospheric trace metals over the south-west Indian Ocean: total gaseous mercury, aerosol trace metal concentrations and lead isotope ratios. Mar Chem 121:2–16

    Article  Google Scholar 

  • Wu LY, Tong SR, Wang WG, Ge MF (2011) Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate. Atmos Chem Phys 11:6593–6605

    Article  Google Scholar 

  • Xu B-Y, Zhu T, Tang X-Y, Ding J, Li H-J (2006) Heterogeneous reaction of formaldehyde on surface of α-Al2O3 particles. Chem J Chin Univ-Chin 27:1912–1917

    Google Scholar 

  • Yi J, Bahrini C, Schoemaecker C, Fittschen C, Choi W (2012) Photocatalytic decomposition of H2O2 on different TiO2 surfaces along with the concurrent generation of HO2 radicals monitored using cavity ring down spectroscopy. J Phys Chem C 116:10090–10097

    Article  Google Scholar 

  • Yin Y, Wurzler S, Levin Z, Reisin TG (2002) Interactions of mineral dust particles and clouds: effects on precipitation and cloud optical properties. J Geophys Res-Atmos 107:4724. doi:10.1029/2001JD001544

    Article  Google Scholar 

  • Zhang Z, Shang J, Zhu T, Li H-J, Zhao D, Liu Y et al (2012) Heterogeneous reaction of NO2 on the surface of montmorillonite particles. J Environ Sci-China 24:1753–1758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex R. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baker, A.R., Laskina, O., Grassian, V.H. (2014). Processing and Ageing in the Atmosphere. In: Knippertz, P., Stuut, JB. (eds) Mineral Dust. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8978-3_4

Download citation

Publish with us

Policies and ethics