Processing and Ageing in the Atmosphere



Transport through the atmosphere exposes mineral dust to a number of processes that alter its physicochemical properties, which in turn affects its direct and indirect impacts on climate. In this chapter, we review the physical and chemical processes that alter dust properties and their impacts on dust’s radiative properties, cloud condensation nucleus activity, morphology, nutrient and trace element solubility and the impacts of heterogeneous chemistry on dust surfaces on atmospheric composition.


Physical processing Chemical processing Dust dispersal Solubility Iron Nitrogen Nitric acid Nitrogen oxides Sulphur Ozone Chemical properties Particle surface Ageing 


  1. Aguilar-Islas AM, Wu JF, Rember R, Johansen AM, Shank LM (2010) Dissolution of aerosol-derived iron in seawater: leach solution chemistry, aerosol type, and colloidal iron fraction. Mar Chem 120:25–33CrossRefGoogle Scholar
  2. Al-Hosney HA, Grassian VH (2004) Carbonic acid: an important intermediate in the surface chemistry of calcium carbonate. J Am Chem Soc 126:8068–8069CrossRefGoogle Scholar
  3. Arimoto R, Ray BJ, Lewis NF, Tomza U, Duce RA (1997) Mass-particle size distributions of atmospheric dust and the dry deposition of dust to the remote ocean. J Geophys Res 102:15867–15874CrossRefGoogle Scholar
  4. Baker AR, Croot PL (2010) Atmospheric and marine controls on aerosol iron solubility in seawater. Mar Chem 120:4–13CrossRefGoogle Scholar
  5. Baker AR, Jickells TD (2006) Mineral particle size as a control on aerosol iron solubility. Geophys Res Lett 33, L17608. doi:10.1029/2006GL026557 CrossRefGoogle Scholar
  6. Baker AR, Jickells TD, Witt M, Linge KL (2006) Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar Chem 98:43–58CrossRefGoogle Scholar
  7. Bartels-Rausch T, Brigante M, Elshorbany YF, Ammann M, D’Anna B, George C et al (2010) Humic acid in ice photo-enhanced conversion of nitrogen dioxide into nitrous acid. Atmos Environ 44:5443–5450CrossRefGoogle Scholar
  8. Bernard J, Seidl M, Mayer E, Loerting T (2012) Formation and stability of bulk carbonic acid (H2CO3) by protonation of tropospheric calcite. Chemphyschem 13:3087–3091CrossRefGoogle Scholar
  9. Betzer PR, Carder KL, Duce RA, Merrill JT, Tindale NW, Uematsu M et al (1988) Long-range transport of giant mineral aerosol particles. Nature 336:568–571CrossRefGoogle Scholar
  10. Bullard JE, McTainsh GH, Pudmenzky C (2004) Aeolian abrasion and modes of fine particle production from natural red dune sands: an experimental study. Sedimentology 51:1103–1125CrossRefGoogle Scholar
  11. Carlos-Cuellar S, Li P, Christensen AP, Krueger BJ, Burrichter C, Grassian VH (2003) Heterogeneous uptake kinetics of volatile organic compounds on oxide surfaces using a Knudsen cell reactor: adsorption of acetic acid, formaldehyde, and methanol on α-Fe2O3, α-Al2O3, and SiO2. J Phys Chem A 107:4250–4261CrossRefGoogle Scholar
  12. Chen Y, Siefert RL (2004) Seasonal and spatial distributions and dry deposition fluxes of atmospheric total and labile iron over the tropical and subtropical North Atlantic Ocean. J Geophys Res-Atmos 109, D09305. doi:10.1029/2003JD003958 Google Scholar
  13. Chen HH, Kong LD, Chen JM, Zhang RY, Wang L (2007) Heterogeneous uptake of carbonyl sulfide on hematite and hematite-NaCl mixtures. Environ Sci Technol 41:6484–6490CrossRefGoogle Scholar
  14. Chiapello I, Bergametti G, Chatenet B, Bousquet P, Dulac F, Santos Soares E (1997) Origins of African dust transported over the northeastern tropical Atlantic. J Geophys Res 102:13701–13709CrossRefGoogle Scholar
  15. Crumeyrolle S, Gomes L, Tulet P, Matsuki A, Schwarzenboeck A, Crahan K (2008) Increase of the aerosol hygroscopicity by cloud processing in a mesoscale convective system: a case study from the AMMA campaign. Atmos Chem Phys 8:6907–6924CrossRefGoogle Scholar
  16. Cwiertny DM, Baltrusaitis J, Hunter GJ, Laskin A, Scherer MM, Grassian VH (2008) Characterization and acid-mobilization study of iron-containing mineral dust source materials. J Geophys Res 113, D05202. doi:10.1029/2007JD009332 Google Scholar
  17. Desboeufs KV, Losno R, Colin JL (2001) Factors influencing aerosol solubility during cloud processes. Atmos Environ 35:3529–3537CrossRefGoogle Scholar
  18. Dupart Y, King SM, Nekat B, Nowak A, Wiedensohler A, Herrmann H et al (2012) Mineral dust photochemistry induces nucleation events in the presence of SO2. Proc Natl Acad Sci U S A 109:20842–20847CrossRefGoogle Scholar
  19. Erel Y, Pehkonen SO, Hoffmann MR (1993) Redox chemistry of iron in fog and stratus clouds. J Geophys Res 98:18423–18434CrossRefGoogle Scholar
  20. Finlayson-Pitts BJ, Wingen LM, Sumner AL, Syomin D, Ramazan KA (2003) The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys Chem Chem Phys 5:223–242CrossRefGoogle Scholar
  21. Formenti P, Schütz L, Balkanski Y, Desboeufs K, Ebert M, Kandler K et al (2011) Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos Chem Phys 11:8231–8256CrossRefGoogle Scholar
  22. Gibson ER, Hudson PK, Grassian VH (2006) Physicochemical properties of nitrate aerosols: implications for the atmosphere. J Phys Chem A 110:11785–11799CrossRefGoogle Scholar
  23. Gierlus KM, Laskina O, Abernathy TL, Grassian VH (2012) Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol. Atmos Environ 46:125–130CrossRefGoogle Scholar
  24. Glaccum RA, Prospero JM (1980) Saharan aerosols over the tropical North Atlantic – mineralogy. Mar Geol 37:295–321CrossRefGoogle Scholar
  25. Guest CA, Schulze DG, Thompson IA, Huber DM (2002) Correlating manganese X-ray absorption near-edge structure spectra with extractable soil manganese. Soil Sci Soc Am J 66:1172–1181CrossRefGoogle Scholar
  26. Guieu C, Bonnet S, Wagener T, Loye-Pilot MD (2005) Biomass burning as a source of dissolved iron to the open ocean? Geophys Res Lett 32, L19608. doi:10.1029/2005GL022962 CrossRefGoogle Scholar
  27. Gustafsson RJ, Orlov A, Griffiths PT, Cox RA, Lambert RM (2006) Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. Chem Commun 37:3936–3938Google Scholar
  28. Hadjiivanov K, Knozinger H (2000) Species formed after NO adsorption and NO + O2 co-adsorption on TiO2: an FTIR spectroscopic study. Phys Chem Chem Phys 2:2803–2806CrossRefGoogle Scholar
  29. Hanisch F, Crowley JN (2001) Heterogeneous reactivity of gaseous nitric acid on Al2O3, CaCO3, and atmospheric dust samples: a Knudsen cell study. J Phys Chem A 105:3096–3106CrossRefGoogle Scholar
  30. Hanisch F, Crowley JN (2003) Ozone decomposition on Saharan dust: an experimental investigation. Atmos Chem Phys 3:119–130CrossRefGoogle Scholar
  31. Ito A (2013) Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean. Global Biogeochem Cycles 27:1–10. doi:10.1029/2012GB004378 CrossRefGoogle Scholar
  32. Johnson MS, Meskhidze N, Solmon F, Gasso S, Chuang PY, Gaiero DM et al (2010) Modeling dust and soluble iron deposition to the South Atlantic Ocean. J Geophys Res 115, D15202. doi:10.1029/2009JD013311 CrossRefGoogle Scholar
  33. Journet E, Desboeufs KV, Caquineau S, Colin JL (2008) Mineralogy as a critical factor of dust iron solubility. Geophys Res Lett 35, L07805. doi:10.1029/2007GL031589 CrossRefGoogle Scholar
  34. Kim J-S, Park K (2012) Atmospheric aging of Asian dust particles during long range transport. Aerosol Sci Tech 46:913–924CrossRefGoogle Scholar
  35. Kulmala M, Pirjola U, Makela JM (2000) Stable sulphate clusters as a source of new atmospheric particles. Nature 404:66–69CrossRefGoogle Scholar
  36. Lee SH, Murphy DM, Thomson DS, Middlebrook AM (2002) Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta SuperSite Project: focus on organic/sulfate, lead, soot, and mineral particles. J Geophys Res-Atmos 107:4003. doi:10.1029/2000JD000011 CrossRefGoogle Scholar
  37. Li P, Perreau KA, Covington E, Song CH, Carmichael GR, Grassian VH (2001) Heterogeneous reactions of volatile organic compounds on oxide particles of the most abundant crustal elements: surface reactions of acetaldehyde, acetone, and propionaldehyde on SiO2, Al2O3, Fe2O3, TiO2, and CaO. J Geophys Res-Atmos 106:5517–5529CrossRefGoogle Scholar
  38. Liu Y, Ma J, He H (2010) Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study. Atmos Chem Phys 10:10335–10344CrossRefGoogle Scholar
  39. Ma J, Liu Y, He H (2011) Heterogeneous reactions between NO2 and anthracene adsorbed on SiO2 and MgO. Atmos Environ 45:917–924CrossRefGoogle Scholar
  40. Ma Q, Liu Y, Liu C, He H (2012) Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles. Phys Chem Chem Phys 14:8403–8409CrossRefGoogle Scholar
  41. Mackie DS, Boyd PW, Hunter KA, McTainsh GH (2005) Simulating the cloud processing of iron in Australian dust: pH and dust concentration. Geophys Res Lett 32, L06809. doi:10.1029/2004GL022122 CrossRefGoogle Scholar
  42. Mackie DS, Peat JM, McTainsh GH, Boyd PW, Hunter KA (2006) Soil abrasion and eolian dust production: implications for iron partitioning and solubility. Geochem Geophys Geosyst 7, Q12Q03. doi:10.1029/2006GC001404 CrossRefGoogle Scholar
  43. Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD et al (2005) The atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19, GB4025. doi:10.1029/2004GB002402 Google Scholar
  44. Maring H, Savoie DL, Izaguirre MA, Custals L, Reid JS (2003) Mineral dust aerosol size distribution change during atmospheric transport. J Geophys Res 108:8592. doi:10.1029/2002JD002536 CrossRefGoogle Scholar
  45. Meskhidze N, Chameides WL, Nenes A, Chen G (2003) Iron mobilization in mineral dust: can anthropogenic SO2 emissions affect ocean productivity? Geophys Res Lett 30:2085. doi:10.1029/2003GL018035 CrossRefGoogle Scholar
  46. Morton P, Landing WM, Hsu SC, Milne A, Aguilar-Islas AM, Baker AR et al (2013) Methods for sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnol Oceanogr-Methods 11:62–78CrossRefGoogle Scholar
  47. Ndour M, Conchon P, D’Anna B, Ka O, George C (2009) Photochemistry of mineral dust surface as a potential atmospheric renoxification process. Geophys Res Lett 36, L05816. doi:10.1029/2008GL036662 CrossRefGoogle Scholar
  48. Nenes A, Krom MD, Mihalopoulos N, Van Cappellen P, Shi Z, Bougiatioti A et al (2011) Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans. Atmos Chem Phys 11:6265–6272CrossRefGoogle Scholar
  49. Nicolas M, Ndour M, Ka O, D’Anna B, George C (2009) Photochemistry of atmospheric dust: ozone decomposition on illuminated titanium dioxide. Environ Sci Technol 43:7437–7442CrossRefGoogle Scholar
  50. Pehkonen SO, Siefert R, Erel Y, Webb S, Hoffmann MR (1993) Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic-compounds. Environ Sci Technol 27:2056–2062CrossRefGoogle Scholar
  51. Potter RM, Rossman GR (1979) The manganese- and iron-oxide mineralogy of desert varnish. Chem Geol 25:79–94CrossRefGoogle Scholar
  52. Prospero JM, Nees RT, Uematsu M (1987) Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J Geophys Res 92:14723–14731CrossRefGoogle Scholar
  53. Ramazan KA, Wingen LM, Miller Y, Chaban GM, Gerber RB, Xantheas SS et al (2006) New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes. J Phys Chem A 110:6886–6897CrossRefGoogle Scholar
  54. Reid JS, Jonsson HH, Maring HB, Smirnov A, Savoie DL, Cliff SS et al (2003) Comparison of size and morphological measurements of coarse mode dust particles from Africa. J Geophys Res 108:8593. doi:10.1029/2002JD002485 CrossRefGoogle Scholar
  55. Rubasinghege G, Grassian VH (2009) Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces. J Phys Chem A 113:7818–7825CrossRefGoogle Scholar
  56. Rubasinghege G, Grassian VH (2013) Role(s) of adsorbed water in the surface chemistry of environmental interfaces. Chem Commun 30:3071–3094Google Scholar
  57. Rubasinghege G, Lentz RW, Scherer MM, Grassian VH (2010) Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution. Proc Natl Acad Sci U S A 107:6628–6633CrossRefGoogle Scholar
  58. Russell LM, Maria SF, Myneni SCB (2002) Mapping organic coatings on atmospheric particles. Geophys Res Lett 29:1779. doi:10.1029/2002GL014874 Google Scholar
  59. Saliba NA, Mochida M, Finlayson-Pitts BJ (2000) Laboratory studies of sources of HONO in polluted urban atmospheres. Geophys Res Lett 27:3229–3232CrossRefGoogle Scholar
  60. Schulz M, Balkanski YJ, Guelle W, Dulac F (1998) Role of aerosol size distribution and source location in a three-dimensional simulation of a Saharan dust episode tested against satellite-derived optical thickness. J Geophys Res-Atmos 103:10579–10592CrossRefGoogle Scholar
  61. Sedwick PN, Sholkovitz ER, Church TM (2007) Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem Geophys Geosyst 8, Q10Q06. doi:10.1029/2007GC001586 CrossRefGoogle Scholar
  62. Shi Z, Krom MD, Bonneville S, Baker AR, Jickells TD, Benning LG (2009) Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing. Environ Sci Technol 43:6592–6596CrossRefGoogle Scholar
  63. Shi Z, Bonneville S, Krom MD, Carslaw KS, Jickells TD, Baker AR et al (2011) Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing. Atmos Chem Phys 11:995–1007CrossRefGoogle Scholar
  64. Sholkovitz ER, Sedwick PN, Church TM (2009) Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: empirical estimates for island sites in the North Atlantic. Geochim Cosmochim Acta 73:3981–4003CrossRefGoogle Scholar
  65. Sholkovitz ER, Sedwick PN, Church TM, Baker AR, Powell CF (2012) Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim Cosmochim Acta 89:173–189CrossRefGoogle Scholar
  66. Siefert RL, Pehkonen SO, Erel Y, Hoffmann MR (1994) Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids. Geochim Cosmochim Acta 58:3271–3279CrossRefGoogle Scholar
  67. Spokes LJ, Jickells TD (1996) Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater. Aquat Geochem 1:355–374CrossRefGoogle Scholar
  68. Spokes LJ, Jickells TD, Lim B (1994) Solubilisation of aerosol trace metals by cloud processing: a laboratory study. Geochim Cosmochim Acta 58:3281–3287CrossRefGoogle Scholar
  69. Styler SA, Donaldson DJ (2012) Heterogeneous photochemistry of oxalic acid on Mauritanian sand and Icelandic volcanic ash. Environ Sci Technol 46:8756–8763CrossRefGoogle Scholar
  70. Sullivan RC, Moore MJK, Petters MD, Kreidenweis SM, Roberts GC, Prather KA (2009) Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos Chem Phys 9:3303–3316CrossRefGoogle Scholar
  71. Sullivan RC, Petters MD, DeMott PJ, Kreidenweis SM, Wex H, Niedermeier D et al (2010) Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos Chem Phys 10:11471–11487CrossRefGoogle Scholar
  72. Takeuchi M, Deguchi J, Sakai S, Anpo M (2010) Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders. Appl Catal B-Environ 96:218–223CrossRefGoogle Scholar
  73. Theodosi C, Markaki Z, Mihalopoulos N (2010) Iron speciation, solubility and temporal variability in wet and dry deposition in the Eastern Mediterranean. Mar Chem 120:100–107CrossRefGoogle Scholar
  74. Usher CR, Al-Hosney H, Carlos-Cuellar S, Grassian VH (2002) A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles. J Geophys Res-Atmos 107:4713. doi:10.1029/2002JD002051 CrossRefGoogle Scholar
  75. Usher CR, Michel AE, Grassian VH (2003) Reactions on mineral dust. Chem Rev 103(12):4883–4939CrossRefGoogle Scholar
  76. Wang W-G, Ge M-F, Sun Q (2011) Heterogeneous uptake of hydrogen peroxide on mineral oxides. Chin J Chem Phys 24:515–520CrossRefGoogle Scholar
  77. Witt MLI, Mather TA, Baker AR, de Hoog C-J, Pyle DM (2010) Atmospheric trace metals over the south-west Indian Ocean: total gaseous mercury, aerosol trace metal concentrations and lead isotope ratios. Mar Chem 121:2–16CrossRefGoogle Scholar
  78. Wu LY, Tong SR, Wang WG, Ge MF (2011) Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate. Atmos Chem Phys 11:6593–6605CrossRefGoogle Scholar
  79. Xu B-Y, Zhu T, Tang X-Y, Ding J, Li H-J (2006) Heterogeneous reaction of formaldehyde on surface of α-Al2O3 particles. Chem J Chin Univ-Chin 27:1912–1917Google Scholar
  80. Yi J, Bahrini C, Schoemaecker C, Fittschen C, Choi W (2012) Photocatalytic decomposition of H2O2 on different TiO2 surfaces along with the concurrent generation of HO2 radicals monitored using cavity ring down spectroscopy. J Phys Chem C 116:10090–10097CrossRefGoogle Scholar
  81. Yin Y, Wurzler S, Levin Z, Reisin TG (2002) Interactions of mineral dust particles and clouds: effects on precipitation and cloud optical properties. J Geophys Res-Atmos 107:4724. doi:10.1029/2001JD001544 CrossRefGoogle Scholar
  82. Zhang Z, Shang J, Zhu T, Li H-J, Zhao D, Liu Y et al (2012) Heterogeneous reaction of NO2 on the surface of montmorillonite particles. J Environ Sci-China 24:1753–1758CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alex R. Baker
    • 1
  • Olga Laskina
    • 2
  • Vicki H. Grassian
    • 2
  1. 1.Centre for Ocean and Atmospheric Sciences, School of Environmental SciencesUniversity of East AngliaNorwichUK
  2. 2.Department of ChemistryUniversity of IowaIowa CityUSA

Personalised recommendations