How to Measure Thermal Conductivity

  • Guglielmo VenturaEmail author
  • Mauro Perfetti
Part of the International Cryogenics Monograph Series book series (ICMS)


The methods to measure the thermal conductivity at low temperature are described: the steady-state techniques, (Sect.  2.2); the 3ω technique (Sect.  2.3); and the thermal diffusivity measurement (Sect.  2.4). Each of these techniques has its own advantages as well as its inherent limitations, with some techniques more appropriate to specific sample geometry, such as the 3ω technique for thin films which is discussed in detail in Sect.  2.4.2. The radial flux method is reported in Sect.  2.2.4, the laser flash diffusivity method in Sect.  2.4.1 and the “pulsed power or Maldonado technique” in Sect.  2.3.2.


Thermal Conductivity Thermal Conductivity Measurement Temperature Wave Guard Ring Variable Range Hopping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ventura, G., Risegari, L.: The art of cryogenics: low-temperature experimental techniques. Elsevier, Amsterdam (2007)Google Scholar
  2. 2.
    Woodcraft, A.L.: Predicting the thermal conductivity of aluminium alloys in the cryogenic to room temperature range. Cryogenics 45(6), 421–431 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Woodcraft, A.L.: Recommended values for the thermal conductivity of aluminium of different purities in the cryogenic to room temperature range, and a comparison with copper. Cryogenics 45(9), 626–636 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Slack, G.A.: The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1–71 (1979)Google Scholar
  5. 5.
    Tye, R.P.: Thermal Conductivity, vol. 1. Academic Press, London (1969)Google Scholar
  6. 6.
    Johnson, V.A., Marton, L.L., Lark-Horovitz, K.: Methods of Experimental Physics. Springer, New York (1976)Google Scholar
  7. 7.
    Berman, R. (ed.): Thermal Conduction in Solids. Oxford University Press, Oxford (1976)Google Scholar
  8. 8.
    Pobell, F.: Matter and Methods at Low Temperatures. Springer, New York (2007)Google Scholar
  9. 9.
    Wikus, P., Hertel, S.A., Leman, S.W., McCarthy, K.A., Ojeda, S.M., Figueroa-Feliciano, E.: The electrical resistance and thermal conductivity of Ti 15 V–3Cr–3Sn–3Al at cryogenic temperatures. Cryogenics 51(1), 41–44 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Risegari, L., Barucci, M., Olivieri, E., Pasca, E., Ventura, G.: Measurement of the thermal conductivity of copper samples between 30 and 150 mK. Cryogenics 44(12), 875–878 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Buck, W.: Thermal properties. In: Czichos, H., Saito, T., Smith, L. (eds.) Springer Handbook of Materials Measurement Methods, pp. 399–429. Springer, Berlin (2006)Google Scholar
  12. 12.
    Slack, G.A., Glassbrenner, C.: Thermal conductivity of germanium from 3 K to 1020 K. Phys. Rev. 120(3), 782 (1960)ADSCrossRefGoogle Scholar
  13. 13.
    Corbino, O.: Thermal oscillations in lamps of thin fibers with alternating current flowing through them and the resulting effect on the rectifier as a result of the presence of even-numbered harmonics. Physikalische Zeitschrift 11, 413–417 (1910)zbMATHGoogle Scholar
  14. 14.
    Corbino, O.: Periodic resistance changes of fine metal threads which are brought together by alternating streams as well as deduction of their thermo characteristics at high temperatures. Phys. Z. 12, 292–295 (1911)Google Scholar
  15. 15.
    Rosenthal, L.A.: Thermal response of bridgewires used in electroexplosive devices. Rev. Sci. Instrum. 32(9), 1033–1036 (1961)ADSCrossRefGoogle Scholar
  16. 16.
    Holland, L.R.: Physical properties of titanium. III. The specific heat. J. Appl. Phys. 34(8), 2350–2357 (1963)ADSCrossRefGoogle Scholar
  17. 17.
    Birge, N.O., Dixon, P.K., Menon, N.: Specific heat spectroscopy: origins, status and applications of the 3ω method. Thermochim. Acta 304, 51–66 (1997)CrossRefGoogle Scholar
  18. 18.
    Birge, N.O., Nagel, S.R.: Specific-heat spectroscopy of the glass transition. Phys. Rev. Lett. 54(25), 2674 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    Birge, N.O., Nagel, S.R.: Wide-frequency specific heat spectrometer. Rev. Sci. Instrum. 58(8), 1464–1470 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    Frank, R., Drach, V., Fricke, J.: Determination of thermal conductivity and specific heat by a combined 3ω/decay technique. Rev. Sci. Instrum. 64(3), 760–765 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Cahill, D.G.: Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61(2), 802–808 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    Cahill, D.G., Pohl, R.O.: Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35(8), 4067 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    Carslaw, H., Jaeger, J.: Conduction of Heat in Solids (paperback,). Clarendon Press, Oxford (1959)Google Scholar
  24. 24.
    Lee, S.M., Kwun, Sl: Heat capacity measurement of dielectric solids using a linear surface heater: application to ferroelectrics. Rev. Sci. Instrum. 65(4), 966–970 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    Moon, I.K., Jeong, Y.H., Kwun, S.I.: The 3ω technique for measuring dynamic specific heat and thermal conductivity of a liquid or solid. Rev. Sci. Instrum. 67(1), 29–35 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    Cahill, D.G., Fischer, H.E., Klitsner, T., Swartz, E., Pohl, R.: Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Tech. A: Vac. Surf. Films 7(3), 1259–1266 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    Lee, S.-M., Cahill, D.G.: Heat transport in thin dielectric films. J. Appl. Phys. 81(6), 2590–2595 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Kim, J.H., Feldman, A., Novotny, D.: Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness. J. Appl. Phys. 86(7), 3959–3963 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Yamane, T., Nagai, N., Katayama, S.-I., Todoki, M.: Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J. Appl. Phys. 91(12), 9772–9776 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Raudzis, C., Schatz, F., Wharam, D.: Extending the 3ω method for thin-film analysis to high frequencies. J. Appl. Phys. 93(10), 6050–6055 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Olson, B.W., Graham, S., Chen, K.: A practical extension of the 3ω method to multilayer structures. Rev. Sci. Instrum. 76(5), 053901–053907 (2005)Google Scholar
  32. 32.
    Tong, T., Majumdar, A.: Reexamining the 3-omega technique for thin film thermal characterization. Rev. Sci. Instrum. 77(10), 104902–104909 (2006)Google Scholar
  33. 33.
    Alvarez-Quintana, J., Rodriguez-Viejo, J.: Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample. Sens. Actuators, A 142(1), 232–236 (2008)CrossRefGoogle Scholar
  34. 34.
    Bourgeois, O., Fournier, T., Chaussy, J.: Measurement of the thermal conductance of silicon nanowires at low temperature. J. Appl. Phys. 101(1), 016103 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Lu, L., Yi, W., Zhang, D.: 3ω method for specific heat and thermal conductivity measurements. Rev. Sci. Instrum. 72(7), 2996–3003 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    Choi, T.Y., Poulikakos, D., Tharian, J., Sennhauser, U.: Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method. Appl. Phys. Lett. 87(1), 013103-013108 (2005)Google Scholar
  37. 37.
    Hu, X.J., Padilla, A.A., Xu, J., Fisher, T.S., Goodson, K.E.: 3-omega measurements of vertically oriented carbon nanotubes on silicon. J. Heat. Trans. T. ASME 128, 1109–1113 (2006)Google Scholar
  38. 38.
    Hou, J., Wang, X., Vellelacheruvu, P., Guo, J., Liu, C., Cheng, H.-M.: Thermal characterization of single-wall carbon nanotube bundles using the self-heating 3ω technique. J. Appl. Phys. 100(12), 124314-124319 (2006)Google Scholar
  39. 39.
    Cole, K.D.: Steady-periodic Green’s functions and thermal-measurement applications in rectangular coordinates. J. Heat Trans. 128, 706–716 (2006)Google Scholar
  40. 40.
    Battaglia, J.-L., Wiemer, C., Fanciulli, M.: An accurate low-frequency model for the 3ω method. J. Appl. Phys. 101(10), 104510 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Jonsson, U.G., Andersson, O.: Investigations of the low-and high-frequency response of-sensors used in dynamic heat capacity measurements. Meas. Sci. Technol. 9(11), 1873 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Jacquot, A., Lenoir, B., Dauscher, A., Stolzer, M., Meusel, J.: Numerical simulation of the 3ω method for measuring the thermal conductivity. J. Appl. Phys. 91(7), 4733–4738 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Borca-Tasciuc, T., Kumar, A., Chen, G.: Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 72(4), 2139–2147 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    Bhattacharya, P., Nara, S., Vijayan, P., Tang, T., Lai, W., Phelan, P., Prasher, R., Song, D., Wang, J.: Characterization of the temperature oscillation technique to measure the thermal conductivity of fluids. Int. J. Heat Mass Transfer 49(17), 2950–2956 (2006)CrossRefGoogle Scholar
  45. 45.
    Wang, H., Sen, M.: Analysis of the 3-omega method for thermal conductivity measurement. Int. J. Heat Mass Transfer 52(7), 2102–2109 (2009)CrossRefzbMATHGoogle Scholar
  46. 46.
    Wang, Z.L., Tang, D.W., Zheng, X.H.: Simultaneous determination of thermal conductivities of thin film and substrate by extending 3ω-method to wide-frequency range. Appl. Surf. Sci. 253(22), 9024–9029 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    Faghani, F.: Thermal Conductivity Measurement of PEDOT: PSS by 3-Omega Technique. Linköping, Sweden (2010)Google Scholar
  48. 48.
    De Koninck, D.: Thermal conductivity measurements using the 3-omega technique: application to power harvesting microsystems. In: Masters Abstracts International 2008Google Scholar
  49. 49.
    Maldonado, O.: Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32(10), 908–912 (1992)ADSCrossRefGoogle Scholar
  50. 50.
    DESIGN, Q.: Sorrento Valley Rd. San Diego, CA 92121-1311 USAGoogle Scholar
  51. 51.
    Parker, W., Jenkins, R., Butler, C., Abbott, G.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)ADSCrossRefGoogle Scholar
  52. 52.
    Donaldson, A., Taylor, R.: Thermal diffusivity measurement by a radial heat flow method. J. Appl. Phys. 46(10), 4584–4589 (1975)ADSCrossRefGoogle Scholar
  53. 53.
    Vandersande, J., Pohl, R.: Simple apparatus for the measurement of thermal diffusivity between 80–500 K using the modified Ångström method. Rev. Sci. Instrum. 51(12), 1694–1699 (1980)ADSCrossRefGoogle Scholar
  54. 54.
    Gembarovič, J., Vozár, L., Majerník, V.: Using the least square method for data reduction in the flash method. Int. J. Heat Mass Transfer 33(7), 1563–1565 (1990)CrossRefGoogle Scholar
  55. 55.
    Hatta, I., Sasuga, Y., Kato, R., Maesono, A.: Thermal diffusivity measurement of thin films by means of an ac calorimetric method. Rev. Sci. Instrum. 56(8), 1643–1647 (1985)ADSCrossRefGoogle Scholar
  56. 56.
    Pasca, E., Barucci, M., Ventura, G.: Measurement of Electron-phonon decoupling in NTD31 Germanium. In: Proceedings of the ICATPP 7th 684 (2002)Google Scholar
  57. 57.
    Arnaboldi, C., Avignone, F., Beeman, J., Barucci, M., Balata, M., Brofferio, C., Bucci, C., Cebrian, S., Creswick, R., Capelli, S.: Physics potential and prospects for the CUORICINO and CUORE experiments. Astropart. Phys. 20(2), 91–110 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    Shklovskii, B.I., Efros, A.L.: Electronic properties of doped semiconductors. vol. 1. Moscow Izdatel Nauka, Moscow (1979)Google Scholar
  59. 59.
    Mott, N.F., Physicist, G.B.: Conduction in Non-crystalline Materials. Clarendon Press, Oxford (1987)Google Scholar
  60. 60.
    Barucci, M., Beeman, J., Olivieri, E., Pasca, E., Risegari, L., Ventura, G.: Electrical characteristics of heavily doped NTD Ge at very low temperatures. Physica B 368(1), 139–142 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    Keesom, P., Seidel, G.: Specific heat of germanium and silicon at low temperatures. Phys. Rev. 113(1), 33 (1959)ADSCrossRefGoogle Scholar
  62. 62.
    Richards, P.: Bolometers for infrared and millimeter waves. J. Appl. Phys. 76(1), 1–24 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    Twerenbold, D.: Cryogenic particle detectors. Rep. Prog. Phys. 59(3), 349 (1996)ADSCrossRefGoogle Scholar
  64. 64.
    Wang, N., Wellstood, F.C., Sadoulet, B., Haller, E.E., Beeman, J.: Electrical and thermal properties of neutron-transmutation-doped Ge at 20 mK. Phys. Rev. B 41(6), 3761–3768 (1990)ADSCrossRefGoogle Scholar
  65. 65.
    Wang, N., Beeman, J., Cleland, A., Cummings, A., Haller, E., Lange, A., Ross, R., Sadoulet, B., Steiner, H., Shutt, T.: Particle detection with semiconductor thermistors at low temperatures. Nucl. Sci. IEEE Trans. 36(1), 852–856 (1989)ADSCrossRefGoogle Scholar
  66. 66.
    Soudee, J., Broszkiewicz, D., Giraud-Héraud, Y., Pari, P., Chapellier, M.: Hot electrons effect in a# 23 NTD Ge sample. J. Low Temp. Phys. 110(5–6), 1013–1027 (1998)ADSCrossRefGoogle Scholar
  67. 67.
    Ventura, G., Bianchini, G., Gottardi, E., Peroni, I., Peruzzi, A.: Thermal expansion and thermal conductivity of Torlon at low temperatures. Cryogenics 39(5), 481–484 (1999)ADSCrossRefGoogle Scholar
  68. 68.
    Barucci, M., Olivieri, E., Pasca, E., Risegari, L., Ventura, G.: Thermal conductivity of Torlon between 4.2 and 300 K. Cryogenics 45(4), 295–299 (2005)ADSCrossRefGoogle Scholar
  69. 69.
    Olson, J.: Thermal conductivity of some common cryostat materials between 0.05 and 2 K. Cryogenics 33(7), 729–731 (1993)ADSCrossRefGoogle Scholar
  70. 70.
    Anderson, P.W., Halperin, B., Varma, C.M.: Anomalous low-temperature thermal properties of glasses and spin glasses. Phil. Mag. 25(1), 1–9 (1972)ADSCrossRefzbMATHGoogle Scholar
  71. 71.
    Phillips, W.: Tunneling states in amorphous solids. J. Low Temp. Phys. 7(3–4), 351–360 (1972)ADSCrossRefGoogle Scholar
  72. 72.
    Woodcraft, A.L., Barucci, M., Hastings, P.R., Lolli, L., Martelli, V., Risegari, L., Ventura, G.: Thermal conductivity measurements of pitch-bonded graphites at millikelvin temperatures: finding a replacement for AGOT graphite. Cryogenics 49(5), 159–164 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    Choy, C.: Thermal conductivity of polymers. Polymer 18(10), 984–1004 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.INFNRomeItaly
  2. 2.Dipartimento di ChimicaUniversità di FirenzeSesto FiorentinoItaly

Personalised recommendations