Advertisement

Electrical and Thermal Conductivity

  • Guglielmo VenturaEmail author
  • Mauro Perfetti
Chapter
Part of the International Cryogenics Monograph Series book series (ICMS)

Abstract

After a Sect.  1.1 devoted to electrical conductivity and a section that deals with magnetic and dielectric losses ( 1.2), this chapter explores the theory of thermal conduction in solids. The examined categories of solids are: metals Sect.  1.3.2, Dielectrics Sects.  1.3.3 and  1.3.4 and Nanocomposites Sect.  1.3.5. In Sect.  1.3.6 the problem of thermal and electrical contact between materials is considered because contact resistance occurring at conductor joints in magnets or other high power applications can lead to undesirable electrical losses. At low temperature, thermal contact is also critical in the mounting of temperature sensors, where bad contacts can lead to erroneous results, in particular when superconductivity phenomena are involved.

Keywords

Electrical Resistivity Contact Resistance Thermal Contact Thermal Contact Resistance Thermal Contact Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Van Sciver, S.W.: Helium Cryogenics. Springer, New York (2012)Google Scholar
  2. 2.
    Tritt, T.M.: Thermal Conductivity: Theory, Properties, and Applications. Springer, New York (2004)Google Scholar
  3. 3.
    Ziman, J. (ed.): Electrons and Phonons. Clarendon Press, Oxford (1972)Google Scholar
  4. 4.
    Rosenberg, H.M. (ed.): The Solid State. Clarendon Press, Oxford (1984)Google Scholar
  5. 5.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics Holt. Rinehart and Winston, New York (1976)Google Scholar
  6. 6.
    Matthiessen, A., Vogt, C.: On the influence of temperature on the electric conducting-power of alloys. Philos. Trans. R. Soc. Lond. 154, 167–200 (1864)CrossRefGoogle Scholar
  7. 7.
    Ventura, G., Risegari, L.: The Art of Cryogenics: Low-Temperature Experimental Techniques. Elsevier, Amsterdam (2007)Google Scholar
  8. 8.
    Olson, J.: Thermal conductivity of some common cryostat materials between 0.05 and 2 K. Cryogenics 33(7), 729–731 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    DeGarmo, E.P., Black, J.T., Kohser, R.A., Klamecki, B.E.: Materials and Process in Manufacturing. Macmillan Publishing Company, New York (1984)Google Scholar
  10. 10.
    Moiseeva, N.: Methods of constructing an individual calibration characteristic for working platinum resistance thermometers. Meas. Tech. 44(5), 502–507 (2001)CrossRefGoogle Scholar
  11. 11.
    Woodcraft, A.L.: Zirconium copper—a new material for use at low temperatures? In: AIP Conference Proceedings 2006, p. 1691 (2006)Google Scholar
  12. 12.
    Powell, R., Fickett, F.: Cryogenic properties of copper vol. 1. In: Proceedings of INCRA REP (1979)Google Scholar
  13. 13.
    Clark, A., Childs, G., Wallace, G.: Electrical resistivity of some engineering alloys at low temperatures. Cryogenics 10(4), 295–305 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    Ledbetter, H., Reed, R., Clark, A.: Materials at Low Temperatures, vol. 1. American Society for Metals, Metals Park, OH (1983)Google Scholar
  15. 15.
    Meaden, G.T.: Electrical Resistance of Metals, vol. 2. Plenum press, New York (1965)Google Scholar
  16. 16.
    Hall, L.: Survey of Electrical Resistivity Measurements on 16 Pure Metals in the Temperature Range 0 to 273 K (1968). http://www.getcited.org/pub/101292840
  17. 17.
    Matula, R.A.: Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8, 1147 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    Haller, E.: Advanced far-infrared detectors. Infrared Phys. Technol. 35(2), 127–146 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Andeen, C.G., Hagerling, C.W.: High Precision Capacitance Bridge. In. Andeen-Hagerling Inc., Ohio (1988)Google Scholar
  20. 20.
    Hayakawa, R., Tanabe, Y., Wada, Y.: A thermodynamic theory of mechanical relaxation due to energy transfer between strain-sensitive and strain-insensitive modes in polymers. J. Macromol. Sci. Part B Phys. 8(3–4), 445–461 (1973)CrossRefGoogle Scholar
  21. 21.
    Powles, J.: Nuclear magnetic resonance absorption in polymethyl methacrylate and polymethyl α-chloroacrylate. J. Polym. Sci. 22(100), 79–93 (1956)ADSCrossRefGoogle Scholar
  22. 22.
    Odajima, A., Woodward, A., Sauer, J.: Proton magnetic resonance of some α-methyl group-containing polymers and their monomers. J. Polym. Sci. 55(161), 181–196 (1961)ADSCrossRefGoogle Scholar
  23. 23.
    Tanabe, Y., Hirose, J., Okano, K., Wada, Y.: Methyl group relaxations in the glassy phase of polymers. Polymer J 1, 107–115 (1970)CrossRefGoogle Scholar
  24. 24.
    Armeniades, C., Baer, E.: Structural origin of the cryogenic relaxations in poly (ethylene terephthalate). J. Polym. Sci. Part A-2: Polym. Phys. 9(8), 1345–1369 (1971)ADSCrossRefGoogle Scholar
  25. 25.
    Hiltner, A., Baer, E.: A dislocation mechanism for cryogenic relaxations in crystalline polymers. Polym. J. 3(3), 378–388 (1972)CrossRefGoogle Scholar
  26. 26.
    Arisawa, H., Yano, O., Wada, Y.: Dielectric loss of poly (vinylidene fluoride) at low temperatures and effect of poling on the low temperature loss. Ferroelectrics 32(1), 39–41 (1981)CrossRefGoogle Scholar
  27. 27.
    Yano, O., Wada, Y.: Dynamic mechanical and dielectric relaxations of polystyrene below the glass temperature. J. Polym. Sci. Part A-2: Polym. Phys. 9(4), 669–686 (1971)ADSCrossRefGoogle Scholar
  28. 28.
    Shimizu, K., Yano, O., Wada, Y.: Dielectric relaxations in polymers with pendent phenyl or pyridine groups at temperatures from 4 °K to 80 °K. J. Polym. Sci. Polym. Phys. Ed. 13(12), 2357–2368 (1975)ADSCrossRefGoogle Scholar
  29. 29.
    Yano, O., Yamaoka, H.: Cryogenic properties of polymers. Prog. Polym. Sci. 20(4), 585–613 (1995)CrossRefGoogle Scholar
  30. 30.
    Barucci, M., Gottardi, E., Peroni, I., Ventura, G.: Low temperature thermal conductivity of Kapton and Upilex. Cryogenics 40(2), 145–147 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Berman, R. (ed.) Thermal Conduction in Solids. Oxford University Press, Oxford (1976)Google Scholar
  32. 32.
    Franz, R., Wiedemann, G.: Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. 165(8), 497–531 (1853)CrossRefGoogle Scholar
  33. 33.
    Kittel, C. (ed.): Introduction to Solid State Physics, 8th edn. Wiley, New York (2005)Google Scholar
  34. 34.
    Gloos, K., Mitschka, C., Pobell, F., Smeibidl, P.: Thermal conductivity of normal and superconducting metals. Cryogenics 30(1), 14–18 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    Hust, J., Sparks, L.: Lorenz Ratios of Technically Important Metals and Alloys, vol. 634. US Government printing office, Washington (1973)Google Scholar
  36. 36.
    Pobell, F.: Matter and Methods at Low Temperatures. Springer, Berlin (2007)Google Scholar
  37. 37.
    Callaway, J., Wang, C.: Energy bands in ferromagnetic iron. Phys. Rev. B 16(5), 2095 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    Woodcraft, A.L., Barucci, M., Hastings, P.R., Lolli, L., Martelli, V., Risegari, L., Ventura, G.: Thermal conductivity measurements of pitch-bonded graphites at millikelvin temperatures: finding a replacement for AGOT graphite. Cryogenics 49(5), 159–164 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    White, G., Meeson, P.: Experimental Techniques in Low-Temperature Physics. Clarendon Press, Oxford (2002)Google Scholar
  40. 40.
    Zaitlin, M.P., Anderson, A.: Phonon thermal transport in noncrystalline materials. Phys. Rev. B 12(10), 4475 (1975)ADSCrossRefGoogle Scholar
  41. 41.
    Anderson, P.W., Halperin, B., Varma, C.M.: Anomalous low-temperature thermal properties of glasses and spin glasses. Phil. Mag. 25(1), 1–9 (1972)ADSCrossRefzbMATHGoogle Scholar
  42. 42.
    Phillips, W.: Tunneling states in amorphous solids. J. Low Temp. Phys. 7(3–4), 351–360 (1972)ADSCrossRefGoogle Scholar
  43. 43.
    Lubchenko, V., Wolynes, P.G.: Intrinsic quantum excitations of low temperature glasses. Phys. Rev. Lett. 87(19), 195901 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    Lubchenko, V., Wolynes, P.G.: The origin of the boson peak and thermal conductivity plateau in low-temperature glasses. Proc. Natl. Acad. Sci. 100(4), 1515–1518 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Talon, C., Zou, Q., Ramos, M., Villar, R., Vieira, S.: Low-temperature specific heat and thermal conductivity of glycerol. Phys. Rev. B 65(1), 012203 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    Parshin, D.: Interactions of soft atomic potentials and universality of low-temperature properties of glasses. Phys. Rev. B 49(14), 9400 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    Buchenau, U., Galperin, Y.M., Gurevich, V., Parshin, D., Ramos, M., Schober, H.: Interaction of soft modes and sound waves in glasses. Phys. Rev. B 46(5), 2798 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    Reese, W.: Thermal properties of polymers at low temperatures. J. Macromol. Sci. Chem. 3(7), 1257–1295 (1969)CrossRefGoogle Scholar
  49. 49.
    Choy, C., Greig, D.: The low temperature thermal conductivity of isotropic and oriented polymers. J. Phys. C: Solid State Phys. 10(2), 169 (1977)ADSCrossRefGoogle Scholar
  50. 50.
    Pobell, F. (ed.) Matter and Methods at Low Temperature, 2nd edn. Springer, Berlin (1991)Google Scholar
  51. 51.
    Cahill, D.G., Watson, S.K., Pohl, R.O.: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46(10), 6131 (1992)ADSCrossRefGoogle Scholar
  52. 52.
    Roy, R., Komarneni, S., Parker, J., Thomas, G.: Nanophase and Nanocomposite Materials. Mater. Res. Soci. 241 (1984)Google Scholar
  53. 53.
    Feynman, R.P.: There’s plenty of room at the bottom. Eng. Sci. 23(5), 22–36 (1960)Google Scholar
  54. 54.
    Advani, S.G.: Processing and Properties of Nanocomposites. World Scientific, Singapore (2007)Google Scholar
  55. 55.
    Green, C., Vaughan, A.: Nanodielectrics-How Much Do We Really Understand?[Feature Article]. IEEE Electr. Insul. Mag. 24(4), 6–16 (2008)CrossRefGoogle Scholar
  56. 56.
    Tait, H.: 5 Thousand Years of Glass. University of Pennsylvania Press, Philadelphia (2004)Google Scholar
  57. 57.
    Vaughan, A.: Raman nanotechnology-the Lycurgus Cup-letter to the editor. IEEE Electr. Insul. Mag. 24(6), 4 (2008)Google Scholar
  58. 58.
    Andritsch, T.: Epoxy based nanocomposites for high voltage DC applications. Synthesis, dielectric properties and space charge dynamics. PhD thesis, Delft University of Technology (2010)Google Scholar
  59. 59.
    Gupta, R.K., Kennel, E., Kim, K.-J.: Polymer Nanocomposites Handbook. CRC Press (2010)Google Scholar
  60. 60.
    Mark, J., Wen, J.: Inorganic‐organic composites containing mixed‐oxide phases. In: Macromolecular Symposia 1995, pp. 89–96. Wiley Online Library (1995)Google Scholar
  61. 61.
    Carter, L.W., Hendricks, J.G., Bolley, D.S.: U.S. Patent 2.531.396. USA PatentGoogle Scholar
  62. 62.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)ADSCrossRefGoogle Scholar
  63. 63.
    Tans, S.J., Devoret, M.H., Dai, H.J., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624), 474–477 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    Twardowski, T.E., Twardowski, T.A.: Introduction to Nanocomposite Materials: Properties, Processing, Characterization. DEStech publications, Inc U.S.A (2007)Google Scholar
  65. 65.
    Liao, J., Ren, Y., Xiao, T., Mai, Y., Yu, Z.: Polymer Nanocomposites. Woodhead Publishing Limited, Cambridge (2006) Google Scholar
  66. 66.
    Pissis, P., Kotsilkova, R.: Thermoset Nanocomposites for Engineering Applications. Rapra Technology, UK (2007)Google Scholar
  67. 67.
    Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R.: Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites–a review. Prog. Polym, Sci (2013)Google Scholar
  68. 68.
    Kurimoto, M., Watanabe, H., Kato, K., Hanai, M., Hoshina, Y., Takei, M., Okubo, H.: Dielectric properties of epoxy/alumina nanocomposite influenced by particle dispersibility. In: Electrical Insulation and Dielectric Phenomena, 2008. CEIDP 2008. IEEE Annual Report Conference on 2008, pp. 706–709 (2008)Google Scholar
  69. 69.
    Nelson, J.K.: Dielectric Polymer Nanocomposites. Springer, New York (2010). http://link.springer.com/book/10.1007/978-1-4419-1591-7
  70. 70.
    Singha, S., Thomas, M.J.: Polymer composite/nanocomposite processing and its effect on the electrical properties. In: Electrical Insulation and Dielectric Phenomena, 2006 IEEE Conference on 2006, pp. 557–560 (2006)Google Scholar
  71. 71.
    Yung, K., Wang, J., Yue, T.: Thermal management for boron nitride filled metal core printed circuit board. J. Compos. Mater. 42(24), 2615–2627 (2008)ADSCrossRefGoogle Scholar
  72. 72.
    Levering, A.W.: Interphases in Zirconium Silicate Filled High Density Polyethylene and Polypropylene (1995)Google Scholar
  73. 73.
    Schulz, M.J., Kelkar, A.D., Sundaresan, M.J.: Nanoengineering of Structural, Functional and Smart Materials. CRC Press, Boca Raton (2005)Google Scholar
  74. 74.
    Capek, I.: Nanocomposite Structures and Dispersions, vol. 27. Access Online via Elsevier (2006)Google Scholar
  75. 75.
    Roy, M., Nelson, J., MacCrone, R., Schadler, L., Reed, C., Keefe, R.: Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 12(4), 629–643 (2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1511089&tag=1 CrossRefGoogle Scholar
  76. 76.
    Smith, R., Liang, C., Landry, M., Nelson, J., Schadler, L.: The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15(1), 187–196 (2008)CrossRefGoogle Scholar
  77. 77.
    Xanthos, M.: Polymers and Polymer Composites. Functional Fillers for Plastics, pp. 1–16. Wiley, New York (2005)Google Scholar
  78. 78.
    Godovsky, Y.K.: Thermodynamic Behavior of Solid Polymers in Plastic Deformation and Cold Drawing. Springer, Berlin (1992)Google Scholar
  79. 79.
    Tekce, H.S., Kumlutas, D., Tavman, I.H.: Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J. Reinf. Plast. Compos. 26(1), 113–121 (2007)ADSCrossRefGoogle Scholar
  80. 80.
    Hansen, D., Bernier, G.: Thermal conductivity of polyethylene: the effects of crystal size, density and orientation on the thermal conductivity. Polym. Eng. Sci. 12(3), 204–208 (1972) CrossRefGoogle Scholar
  81. 81.
    Mark, J.E.: Physical Properties of Polymers Handbook. Springer, Berlin (2007). http://link.springer.com/book/10.1007/978-0-387-69002-5
  82. 82.
    Kesava Reddy, M., Subramanyam Reddy, K., Yoga, K., Prakash, M., Narasimhaswamy, T., Mandal, A., Lobo, N.P., Ramanathan, K., Rao, D.S., Krishna Prasad, S.: Structural characterization and molecular order of rodlike mesogens with three-and four-ring core by XRD and 13C NMR spectroscopy. J. Phys. Chem. B 117(18), 5718–5729 (2013)Google Scholar
  83. 83.
    Ekstrand, L., Kristiansen, H., Liu, J.: Characterization of thermally conductive epoxy nano composites. In: Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on 2005, pp. 35–39 (2005)Google Scholar
  84. 84.
    Kim, W., Bae, J.W., Choi, I.D., Kim, Y.S.: Thermally conductive EMC (Epoxy Molding Compound) for microelectronic encapsulation. Polym. Eng. Sci. 39(4), 756–766 (1999)CrossRefMathSciNetGoogle Scholar
  85. 85.
    Hsieh, C.Y., Chung, S.L.: High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder. J. Appl. Polym. Sci. 102(5), 4734–4740 (2006)CrossRefGoogle Scholar
  86. 86.
    Wong, C., Bollampally, R.S.: Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging. IEEE Trans. Adv. Packag. 22(1), 54–59 (1999)CrossRefGoogle Scholar
  87. 87.
    Okamoto, T., Sawa, F., Tomimura, T., Tanimoto, N., Hishida, M., Nakamura, S.: Properties of high-thermal conductive composite with two kinds of fillers. In: Properties and Applications of Dielectric Materials, 2007. Proceedings of the 7th International Conference on 2003, pp. 1142–1145 (2007)Google Scholar
  88. 88.
    Xu, Y., Chung, D.: Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos. Interfaces 7(4), 243–256 (2000)CrossRefGoogle Scholar
  89. 89.
    Han, Z., Wood, J., Herman, H., Zhang, C., Stevens, G.: Thermal properties of composites filled with different fillers. In: Electrical Insulation, 2008. ISEI 2008. Conference Record of the 2008 IEEE International Symposium on 2008, pp. 497–501 (2008)Google Scholar
  90. 90.
    McCullough, R.L.: Generalized combining rules for predicting transport properties of composite materials. Compos. Sci. Technol. 22(1), 3–21 (1985)CrossRefGoogle Scholar
  91. 91.
    Progelhof, R., Throne, J., Ruetsch, R.: Methods for predicting the thermal conductivity of composite systems: a review. Polym. Eng. Sci. 16(9), 615–625 (1976)CrossRefGoogle Scholar
  92. 92.
    Tavman, I.: Effective thermal conductivity of isotropic polymer composites. Int. Commun. Heat Mass Transf. 25(5), 723–732 (1998)CrossRefGoogle Scholar
  93. 93.
    Agarwal, S., Khan, M.M.K., Gupta, R.K.: Thermal conductivity of polymer nanocomposites made with carbon nanofibers. Polym. Eng. Sci. 48(12), 2474–2481 (2008)CrossRefGoogle Scholar
  94. 94.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1. Clarendon Press, Oxford (1881)Google Scholar
  95. 95.
    Pal, R.: On the Lewis-Nielsen model for thermal/electrical conductivity of composites. Compos. A Appl. Sci. Manuf. 39(5), 718–726 (2008)CrossRefGoogle Scholar
  96. 96.
    Fricke, H.: A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys. Rev. 24(5), 575 (1924)ADSCrossRefGoogle Scholar
  97. 97.
    Bruggeman, V.D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416(7), 636–664 (1935)CrossRefGoogle Scholar
  98. 98.
    Lee, E.S., Lee, S.M., Shanefield, D.J., Cannon, W.R.: Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J. Am. Ceram. Soc. 91(4), 1169–1174 (2008)CrossRefGoogle Scholar
  99. 99.
    Hill, R.F., Supancic, P.H.: Thermal conductivity of platelet-filled polymer composites. J. Am. Ceram. Soc. 85(4), 851–857 (2002)CrossRefGoogle Scholar
  100. 100.
    Stevens, G., Herman, H., Han, J., Wood, J., Mitchell, A., Thomas, J.: The role of nano and micro fillers in high thermal conductivity electrical insulation systems. In: 11th Insucon Conference, Birmingham, UK 2009, pp. 286–291Google Scholar
  101. 101.
    Tsao, G.T.-N.: Thermal conductivity of two-phase materials. Ind. Eng. Chem. 53(5), 395–397 (1961)CrossRefGoogle Scholar
  102. 102.
    Cheng, S., Vachon, R.: The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int. J. Heat Mass Transf. 12(3), 249–264 (1969)CrossRefGoogle Scholar
  103. 103.
    Sundstrom, D.W., Lee, Y.D.: Thermal conductivity of polymers filled with particulate solids. J. Appl. Polym. Sci. 16(12), 3159–3167 (1972)CrossRefGoogle Scholar
  104. 104.
    Hamilton, R.: Thermal conductivity of two phase materials. Dissertation, University of Oklahoma (1960)Google Scholar
  105. 105.
    Hamilton, R., Crosser, O.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)CrossRefGoogle Scholar
  106. 106.
    Hatta, H., Taya, M.: Effective thermal conductivity of a misoriented short fiber composite. J. Appl. Phys. 58(7), 2478–2486 (1985)ADSCrossRefGoogle Scholar
  107. 107.
    Meredith, R.E., Tobias, C.W.: Conduction in heterogeneous systems. Advances in electrochemistry and electrochemical engineering 2(II), 15–47 (1962)Google Scholar
  108. 108.
    Nielsen, L.E.: Mechanical properties of particulate-filled systems. J. Compos. Mater. 1(1), 100–119 (1967)Google Scholar
  109. 109.
    Lewis, T., Nielsen, L.: Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14(6), 1449–1471 (1970)CrossRefGoogle Scholar
  110. 110.
    Landel, R.F.: Mechanical Properties of Polymers and Composites, vol. 90. CRC Press, (1994)Google Scholar
  111. 111.
    Halpin, J.: Stiffness and expansion estimates for oriented short fiber composites. J. Compos. Mater. 3(4), 732–734 (1969)Google Scholar
  112. 112.
    Agari, Y., Uno, T.: Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J. Appl. Polym. Sci. 30(5), 2225–2235 (1985)CrossRefGoogle Scholar
  113. 113.
    Agari, Y., Uno, T.: Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32(7), 5705–5712 (1986)CrossRefGoogle Scholar
  114. 114.
    Agari, Y., Ueda, A., Nagai, S.: Thermal conductivity of a polymer composite. J. Appl. Polym. Sci. 49(9), 1625–1634 (1993)CrossRefGoogle Scholar
  115. 115.
    Russell, H.: Principles of heat flow in porous insulators*. J. Am. Ceram. Soc. 18(1–12), 1–5 (1935)CrossRefGoogle Scholar
  116. 116.
    Topper, L.: Industrial design data—analysis of porous thermal insulating materials. Ind. Eng. Chem. 47(7), 1377–1379 (1955)CrossRefGoogle Scholar
  117. 117.
    Jefferson, T., Witzell, O., Sibbitt, W.: Thermal conductivity of graphite—silicone oil and graphite-water suspensions. Ind. Eng. Chem. 50(10), 1589–1592 (1958)CrossRefGoogle Scholar
  118. 118.
    Springer, G.S., Tsai, S.W.: Thermal conductivities of unidirectional materials. J. Compos. Mater. 1(2), 166–173 (1967)ADSCrossRefGoogle Scholar
  119. 119.
    Budiansky, B.: Thermal and thermoelastic properties of isotropic composites. J. Compos. Mater. 4(3), 286–295 (1970)ADSCrossRefGoogle Scholar
  120. 120.
    Baschirow, A., Selenew, J.: Thermal conductivity of composites. Plaste Kaut 23, 656 (1976)Google Scholar
  121. 121.
    McGee, S., McGullough, R.: Combining rules for predicting the thermoelastic properties of particulate filled polymers, polymers, polyblends, and foams. Polym. Compos. 2(4), 149–161 (1981)CrossRefGoogle Scholar
  122. 122.
    Privalko, V., Novikov, V.: Model treatments of the heat conductivity of heterogeneous polymers. In: Thermal and Electrical Conductivity of Polymer Materials, pp. 31–77. Springer (1995)Google Scholar
  123. 123.
    Dul’Nev, G., Novikov, V.: Conductivity determination for a filled heterogeneous system. J. Eng. Phys. Thermophys. 37(4), 1184–1187 (1979)CrossRefGoogle Scholar
  124. 124.
    Heron, J.-S., Souche, G.M., Ong, F.R., Gandit, P., Fournier, T., Bourgeois, O.: Temperature modulation measurements of the thermal properties of nanosystems at low temperatures. J. Low Temp. Phys. 154(5–6), 150–160 (2009)ADSCrossRefGoogle Scholar
  125. 125.
    Huang, C., Fu, S., Zhang, Y., Lauke, B., Li, L., Ye, L.: Cryogenic properties of SiO2/epoxy nanocomposites. Cryogenics 45(6), 450–454 (2005)ADSCrossRefGoogle Scholar
  126. 126.
    Martelli, V., Toccafondi, N., Ventura, G.: Low-temperature thermal conductivity of Nylon-6/Cu nanoparticles. Physica B 405(20), 4247–4249 (2010)ADSCrossRefGoogle Scholar
  127. 127.
    Batchelor, G., O’Brien, R.: Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A Math. Phys. Sci. 355(1682), 313–333 (1977)ADSCrossRefGoogle Scholar
  128. 128.
    Risegari, L., Barucci, M., Bucci, C., Fafone, V., Gorla, P., Giuliani, A., Olivieri, E., Pasca, E., Pirro, S., Quintieri, L.: Use of good copper for the optimization of the cooling down procedure of large masses. Cryogenics 44(3), 167–170 (2004)ADSCrossRefGoogle Scholar
  129. 129.
    Van Sciver, S.W., Nellis, M.N., Pfotenhauer, J.: Thermal and electrical contact Conductance between metals at low temperatures. In: Proceedings Space Cryogenics Workshop 1984, Berlin (DE) (1984)Google Scholar
  130. 130.
    Peterson, R., Anderson, A.: The Kapitza thermal boundary resistance. J. Low Temp. Phys. 11(5–6), 639–665 (1973)ADSCrossRefGoogle Scholar
  131. 131.
    Little, W.: The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37(3), 334–349 (1959)ADSCrossRefGoogle Scholar
  132. 132.
    Radebaugh, R.: Thermal conductance of indium solder joints at low temperatures. Rev. Sci. Instrum. 48, 93 (1977)ADSCrossRefGoogle Scholar
  133. 133.
    Gmelin, E., Asen-Palmer, M., Reuther, M., Villar, R.: Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures. J. Phys. D Appl. Phys. 32(6), R19 (1999)ADSCrossRefGoogle Scholar
  134. 134.
    Didschuns, I., Woodcraft, A., Bintley, D., Hargrave, P.: Thermal conductance measurements of bolted copper to copper joints at sub-Kelvin temperatures. Cryogenics 44(5), 293–299 (2004)ADSCrossRefGoogle Scholar
  135. 135.
    Bintley, D., Woodcraft, A.L., Gannaway, F.C.: Millikelvin thermal conductance measurements of compact rigid thermal isolation joints using sapphire–sapphire contacts, and of copper and beryllium–copper demountable thermal contacts. Cryogenics 47(5), 333–342 (2007)ADSCrossRefGoogle Scholar
  136. 136.
    Fritzsche, H.: Resistivity and hall coefficient of antimony-doped germanium at low temperatures. J. Phys. Chem. Solids 6(1), 69–80 (1958)ADSCrossRefGoogle Scholar
  137. 137.
    Rosenberg, H.M.: The thermal conductivity of metals at low temperatures. Philos. Trans. of the R. Soc. A Math. Phys. Sci. 247(933), 441–497 (1955)Google Scholar
  138. 138.
    Berman, R., Foster, E., Ziman, J.: The thermal conductivity of dielectric crystals: the effect of isotopes. Proc. R. Soc. Lond. A 237(1210), 344–354 (1956)ADSCrossRefGoogle Scholar
  139. 139.
    Nathan, B., Lou, L., Tait, R.: Low temperature thermal properties of mixed crystal KBr KI. Solid State Commun. 19(7), 615–617 (1976)ADSCrossRefGoogle Scholar
  140. 140.
    Guckel, H.: Silicon microsensors: construction, design and performance. Microelectron. Eng. 15(1), 387–398 (1991)CrossRefGoogle Scholar
  141. 141.
    Locatelli, M., Arnaud, D., Routin, M.: Thermal conductivity of some insulating materials materials below 1 K. Cryogenics 16(6), 374–375 (1976)ADSCrossRefGoogle Scholar
  142. 142.
    Morelli, D., Doll, G., Heremans, J., Peacor, S., Uher, C., Dresselhaus, M., Cassanho, A., Gabbe, D., Jenssen, H.: Thermal conductivity of single crystal lanthanum cuprates at very low temperature. Solid State Commun. 77(10), 773–776 (1991)ADSCrossRefGoogle Scholar
  143. 143.
    Stephens, R.: Low-temperature specific heat and thermal conductivity of noncrystalline dielectric solids. Phys. Rev. B 8(6), 2896 (1973)ADSCrossRefMathSciNetGoogle Scholar
  144. 144.
    Fukushima, K., Takahashi, H., Takezawa, Y., Hattori, M., Itoh, M., Yonekura, M.: High thermal conductive epoxy resins with controlled high-order structure [electrical insulation applications]. In: Electrical Insulation and Dielectric Phenomena, 2004. CEIDP’04. 2004 Annual Report Conference on 2004, pp. 340–347 (2004)Google Scholar
  145. 145.
    Scott, T.A., de Bruin, J., Giles, M.M., Terry, C.: Low-temperature thermal properties of nylon and polyethylene. J. Appl. Phys. 44(3), 1212–1216 (1973)ADSCrossRefGoogle Scholar
  146. 146.
    Ekin, J. (ed.) Experimental Techniques for Low Temperature Measurements. Oxford University Press, Oxford (2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.INFNRomeItaly
  2. 2.Dipartimento di ChimicaUniversità di FirenzeSesto FiorentinoItaly

Personalised recommendations