Skip to main content

Thermal Expansion

  • Chapter
  • First Online:

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

All solid materials, when cooled to low temperatures experience a change in physical dimensions which called “thermal contraction” and is typically lower than 1 % in volume in the 4–300 K temperature range. Although the effect is small, it can have a heavy impact on the design of cryogenic devices. The thermal contraction of different materials may vary by as much as an order of magnitude: since cryogenic devices are constructed at room temperature with a lot of different materials, one of the major concerns is the effect of the different thermal contraction and the resulting thermal stress that may occur when two dissimilar materials are bonded together. In this chapter, theory of thermal contraction is reported in Sect. 1.2. Section 1.3 is devoted to the phenomenon of negative thermal expansion and its applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt. Rinehart and Winston, New York (1976)

    Google Scholar 

  2. Grima, J.N., Zammit, V., Gatt, R.: Negative thermal expansion. Xjenza 11, 17–29 (2006)

    Google Scholar 

  3. Wallace, D.C.: Melting of elements. Proc. R. Soc. Lond. A 433(1889), 631–661 (1991)

    Article  ADS  Google Scholar 

  4. Parshukov, A.: Measurement of the Gruneisen coefficients and their dependence on the volume of certain metals. Fiz. Tverd. Tela 27(4), 1228–1232 (1985)

    Google Scholar 

  5. Magomedov, M.: Atomic interaction parameters for lanthanides and actinides. Russ. J. Inorg. Chem. 52(12), 1953–1962 (2007)

    Article  Google Scholar 

  6. Moruzzi, V., Janak, J., Schwarz, K.: Calculated thermal properties of metals. Phys. Rev. B 37(2), 790 (1988)

    Article  ADS  Google Scholar 

  7. Singh, H.: Determination of thermal expansion of germanium, rhodium and iridium by X-rays. Acta Crystallogr. A Cryst. Phys. Diffr. Theoret. Gen. Crystallogr. 24(4), 469–471 (1968)

    Article  ADS  Google Scholar 

  8. Manghnani, M.H., Katahara, K., Fisher, E.S.: Ultrasonic equation of state of rhenium. Phys. Rev. B 9(4), 1421 (1974)

    Article  ADS  Google Scholar 

  9. Rao, R.R., Ramanand, A.: Thermal expansion and bulk modulus of cobalt. J. Low Temp. Phys. 26(3–4), 365–377 (1977)

    ADS  Google Scholar 

  10. Hamlin, J., Tissen, V., Schilling, J.: Superconductivity at 20 K in yttrium metal at pressures exceeding 1Mbar. Phys. C 451(2), 82–85 (2007)

    Article  ADS  Google Scholar 

  11. White, G.K., Collins, J.G.: Thermal expansion of copper, silver, and gold at low temperatures. J. Low Temp. Phys. 7(1–2), 43–75 (1972). doi:10.1007/bf00629120

    Article  ADS  Google Scholar 

  12. White, G., Meeson, P.: Experimental Techniques in Low-Temperature Physics. Clarendon Press, Oxford (2002)

    Google Scholar 

  13. Corruccini, R.J., Gniewek, J.J.: Thermal expansion of technical solids at low temperatures: a compilation from the literature. National Bureau of Standards, US Department of Commerce (1961)

    Google Scholar 

  14. Reed, R.P., Clark, A.F.: Materials at Low Temperatures. American Society for Metals, Ohio, (1983)

    Google Scholar 

  15. Kirby, R.K.: Thermal expansion of polytetrafluoroethylene (Teflon) from −190 to + 300 C. J. Res. Nat. Bur. Stan. 57(2), 91–94 (1956)

    Article  MathSciNet  Google Scholar 

  16. Laquer, H.L.: Low temperature thermal expansion of various materials. Technical information Service (AEC), Oak Ridge, TN (1952)

    Google Scholar 

  17. Marquardt, E., Le, J., Radebaugh, R.: 11th International Cryocooler Conference June 20–22, 2000 Keystone, Co. Cryogenic Material Properties Database, National Institute of Standards and Technology Boulder, CO

    Google Scholar 

  18. Hahn, T.A.: Thermal expansion of copper from 20 to 800 K—Standard reference material 736. J. Appl. Phys. 41(13), 5096–5101 (1970)

    Article  ADS  Google Scholar 

  19. Clark, A.: Low temperature thermal expansion of some metallic alloys. Cryogenics 8(5), 282–289 (1968)

    Article  ADS  Google Scholar 

  20. Dahlerup-Petersen, K., Perrot, A.: Properties of Organic Composite Materials at Cryogenic Temperatures. CERN, Geneva (1979)

    Google Scholar 

  21. Clark, A., Fujii, G., Ranney, M.: The thermal expansion of several materials for superconducting magnets. IEEE Trans. Magn. 17(5), 2316–2319 (1981)

    Article  ADS  Google Scholar 

  22. Arp, V., Wilson, J., Winrich, L., Sikora, P.: Thermal expansion of some engineering materials from 20 to 293 K. Cryogenics 2(4), 230–235 (1962)

    Article  ADS  Google Scholar 

  23. Hartwig, G.: Low-temperature properties of epoxy resins and composites. In: Timmerhaus, K.D., Reed, R.P., Clark, A.F. (eds.) Advances in Cryogenic Engineering, pp. 17–36. Springer, New York (1978)

    Google Scholar 

  24. Guillaume, C.: Open innovation challenges. Nature 131, 658 (1933)

    Article  ADS  Google Scholar 

  25. Guillaume, C.É.: Recherches sur les aciers au nickel. Dilatations aux temperatures elevees; resistance electrique. CR Acad. Sci 125(235), 18 (1897)

    Google Scholar 

  26. Chikazumi, S.: Invar anomalies. J. Magn. Magn. Mater. 10(2), 113–119 (1979)

    Article  ADS  Google Scholar 

  27. Schlosser, W., Graham, G., Meincke, P.: The temperature and magnetic field dependence of the forced magnetostriction and thermal expansion of Invar. J. Phys. Chem. Solids 32(5), 927–938 (1971)

    Article  ADS  Google Scholar 

  28. Manosa, L., Saunders, G., Rahdi, H., Kawald, U., Pelzl, J., Bach, H.: Longitudinal acoustic mode softening and Invar behaviour in Fe72Pt28. J. Phys.: Condens. Matter 3(14), 2273 (1991)

    ADS  Google Scholar 

  29. Manosa, L., Saunders, G., Rahdi, H., Kawald, U., Pelzl, J., Bach, H.: Acoustic-mode vibrational anharmonicity related to the anomalous thermal expansion of Invar iron alloys. Phys. Rev. B 45(5), 2224 (1992)

    Article  ADS  Google Scholar 

  30. Saunders, G., Senin, H., Sidek, H., Pelzl, J.: Third-order elastic constants, vibrational anharmonicity, and the Invar behavior of the Fe72Pt28 alloy. Phys. Rev. B 48(21), 15801 (1993)

    Article  ADS  Google Scholar 

  31. van Schilfgaarde, M., Abrikosov, I., Johansson, B.: Origin of the Invar effect in iron-nickel alloys. Nature 400(6739), 46–49 (1999)

    Article  ADS  Google Scholar 

  32. Kainuma, R., Wang, J., Omori, T., Sutou, Y., Ishida, K.: Invar-type effect induced by cold-rolling deformation in shape memory alloys. Appl. Phys. Lett. 80(23), 4348–4350 (2002)

    Article  ADS  Google Scholar 

  33. Collocott, S., White, G.: Thermal expansion and heat capacity of some stainless steels and FeNi alloys. Cryogenics 26(7), 402–405 (1986)

    Article  ADS  Google Scholar 

  34. Harding, G., Lanchester, P., Street, R.: The low temperature magnetic thermal expansion of CuCl2. 2H2O. J. Phys. C: Solid State Phys. 4(17), 2923 (1971)

    Article  ADS  Google Scholar 

  35. Aliev, F., Villar, R., Vieira, S., de la Torre, M.L., Scolozdra, R., Maple, M.: Energy gap of the ground state of CeNiSn caused by local and long-range magnetic-moment interactions. Phys. Rev. B 47(2), 769 (1993)

    Article  ADS  Google Scholar 

  36. White, G.K.: Phase transitions and the thermal expansion of holmium. J. Phys.: Condens. Matter 1(39), 6987 (1989)

    ADS  Google Scholar 

  37. Gignoux, D., Givord, D., Givord, F., Lemaire, R.: Invar properties in the rare earth-3d transition metal alloys. J. Magn. Magn. Mater. 10(2), 288–293 (1979)

    Article  ADS  Google Scholar 

  38. Tino, Y., Iguchi, Y.: Zero or negative thermal expansion of Fe-Pd alloys and the cause of Invar characteristic. J. Magn. Magn. Mater. 31, 117–118 (1983)

    Article  ADS  Google Scholar 

  39. Hao, Y., Gao, Y., Wang, B., Qu, J., Li, Y., Hu, J., Deng, J.: Negative thermal expansion and magnetic properties of Y2Al3Fe14-xMnx. Appl. Phys. Lett. 78(21), 3277–3279 (2001)

    Article  ADS  Google Scholar 

  40. Hao, Y., Zhao, M., Zhou, Y., Hu, J.: Negative thermal expansion and spontaneous volume magnetostriction of Tb2Fe16Cr compound. Scripta Mater. 53(3), 357–360 (2005)

    Article  Google Scholar 

  41. Hao, Y., Zhou, Y., Zhao, M.: Negative thermal expansion and spontaneous magnetostriction of Dy2AlFe10Mn6 compound. Adv. Eng. Mater. 7(6), 517–520 (2005)

    Article  Google Scholar 

  42. Yan-Ming, H., Yan, Z., Miao, Z.: Spontaneous magnetostriction of Dy2AlFe13Mn3 compound. Chin. Phys. 14(7), 1449 (2005)

    Article  ADS  Google Scholar 

  43. Yan-Ming, H., Miao, Z., Yan, Z.: Spontaneous magnetostriction of Y2Fe16Al compound. Chin. Phys. 14(4), 818 (2005)

    Article  ADS  Google Scholar 

  44. Kmety, C.R., Manson, J.L., Huang, Q., Lynn, J.W., Erwin, R.W., Miller, J.S., Epstein, A.J.: Collinear ferromagnetism and spin orientation in the molecule-based magnets M[N(CN)2]2 (M = Co, Ni). Phys. Rev. B 60(1), 60 (1999)

    Article  ADS  Google Scholar 

  45. Hartwig, G.: Polymer Properties at Room and Cryogenic Temperatures. Springer, New York (1994)

    Google Scholar 

  46. Wetherhold, R.C., Wang, J.: Tailoring thermal deformation by using layered beams. Compos. Sci. Technol. 53(1), 1–6 (1995)

    Article  Google Scholar 

  47. Wetherhold, R.C., Wang, J.: Controlling thermal deformation by using laminated plates. Compos. B Eng. 27(1), 51–57 (1996)

    Article  Google Scholar 

  48. Berthou, H., Neumann, V., Dan, J., Hintermann, H.: Mechanically enhanced capillary columns. Surf. Coat. Technol. 61(1), 93–96 (1993)

    Article  Google Scholar 

  49. Holzer, H., Dunand, D.: Processing, structure and thermal expansion of metal matrix composites containing zirconium tungstate. In: 4th International Conference on Composite Engineering, Hawaii 1997

    Google Scholar 

  50. Yamanaka, A., Kashima, T., Nago, S., Hosoyama, K., Takao, T., Sato, S., Takeo, M.: Coil bobbin composed of high strength polyethylene fiber reinforced plastics for a stable high field superconducting magnet. Phys. C 372, 1447–1450 (2002)

    Article  ADS  Google Scholar 

  51. Takeo, M., Sato, S., Matsuo, M., Kiss, T., Takao, T., Yamanaka, A., Kashima, T., Mito, T., Minamizato, K.: Dependence on winding tensions for stability of a superconducting coil. Cryogenics 43(10), 649–658 (2003)

    Article  ADS  Google Scholar 

  52. Cui, L.S., Schrooten, J., Zheng, Y.J.: Effects of additional reinforcing fibers on the interface quality of SMA wire/epoxy composites. In: Materials Science Forum 2005, pp. 2047–2050. Trans Tech Publications (2005)

    Google Scholar 

  53. Versluis, A., Douglas, W.H., Sakaguchi, R.L.: Thermal expansion coefficient of dental composites measured with strain gauges. Dent. Mater. 12(5), 290–294 (1996)

    Article  Google Scholar 

  54. Collins, E.G., Richter, S.: Linear-quadratic-gaussian-based controller design for Hubble space telescope. J. Guid. Control Dyn. 18(2), 208–213 (1995)

    Article  ADS  Google Scholar 

  55. Wei, Z., Yu, Y., Xing, H., Zhuo, Z., Wu, Y., Zhang, L., Zheng, W., Zhang, Y.: Fabrication of chirped fiber grating with adjustable chirp and fixed central wavelength. IEEE Photonics Technol. Lett. 13(8), 821–823 (2001)

    Article  ADS  Google Scholar 

  56. Mavoori, H., Jin, S., Espindola, R., Strasser, T.: Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating based reconfigurable add drop devices. Opt. Lett. 24(11), 714–716 (1999)

    Article  ADS  Google Scholar 

  57. Ngo, N., Li, S., Zheng, R., Tjin, S., Shum, P.: Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating. J. Lightwave Technol. 21(6), 1568 (2003)

    Article  ADS  Google Scholar 

  58. Evans, J., Hanson, P., Ibberson, R., Duan, N., Kameswari, U., Sleight, A.: Low-temperature oxygen migration and negative thermal expansion in ZrW2-xMoxO8. J. Am. Chem. Soc. 122(36), 8694–8699 (2000)

    Article  Google Scholar 

  59. Evans, J.S., Hu, Z., Jorgensen, J., Argyriou, D., Short, S., Sleight, A.: Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8. Science 275(5296), 61–65 (1997)

    Article  Google Scholar 

  60. Kintaka, K., Nishii, J., Kawamoto, Y., Sakamoto, A., Kazansky, P.G.: Temperature sensitivity of Ge-B-SiO2 waveguide Bragg gratings on a crystallized glass substrate. Opt. Lett. 27(16), 1394–1396 (2002)

    Article  ADS  Google Scholar 

  61. Barrera, G., Bruno, J., Barron, T., Allan, N.: Negative thermal expansion. J. Phys.: Condens. Matter 17(4), R217 (2005)

    ADS  Google Scholar 

  62. Sleight, A.: Compounds that contract on heating. Inorg. Chem. 37(12), 2854–2860 (1998)

    Article  Google Scholar 

  63. Huang, R., Xu, W., Xu, X., Li, L., Pan, X., Evans, D.: Negative thermal expansion and electrical properties of Mn3(Cu0.6NbxGe0.4− x)N (x = 0.05–0.25) compounds. Mater. Lett. 62(16), 2381–2384 (2008)

    Article  Google Scholar 

  64. Huang, R., Wu, Z., Yang, H., Chen, Z., Chu, X., Li, L.: Mechanical and transport properties of low-temperature negative thermal expansion material Mn3CuN co-doped with Ge and Si. Cryogenics 50(11), 750–753 (2010)

    Article  ADS  Google Scholar 

  65. Baughman, R., Galvao, D.: Negative volumetric thermal expansion for proposed hinged phases. Chem. Phys. Lett. 240(1), 180–184 (1995)

    Article  ADS  Google Scholar 

  66. Evans, J.O.: Negative thermal expansion materials†. J. Chem. Soc., Dalton Trans. 19, 3317–3326 (1999)

    Article  Google Scholar 

  67. Sleight, A.W.: Negative thermal expansion materials. Curr. Opin. Solid State Mater. Sci. 3(2), 128–131 (1998)

    Article  ADS  Google Scholar 

  68. Tao, J., Sleight, A.: The role of rigid unit modes in negative thermal expansion. J. Solid State Chem. 173(2), 442–448 (2003)

    Article  ADS  Google Scholar 

  69. Miller, W., Mackenzie, D., Smith, C., Evans, K.: A generalised scale-independent mechanism for tailoring of thermal expansivity: Positive and negative. Mech. Mater. 40(4), 351–361 (2008)

    Article  Google Scholar 

  70. Palumbo, N., Smith, C., Miller, W., Evans, K.: Near-zero thermal expansivity 2-D lattice structures: performance in terms of mass and mechanical properties. Acta Mater. 59(6), 2392–2403 (2011)

    Article  Google Scholar 

  71. Steeves, C.A., Dos Santos E Lucato, S.L., He, M., Antinucci, E., Hutchinson, J.W., Evans, A.G.: Concepts for structurally robust materials that combine low thermal expansion with high stiffness. J. Mech. Phys. Solids 55(9), 1803–1822 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Ventura .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ventura, G., Perfetti, M. (2014). Thermal Expansion. In: Thermal Properties of Solids at Room and Cryogenic Temperatures. International Cryogenics Monograph Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8969-1_4

Download citation

Publish with us

Policies and ethics