Advertisement

Thermal Expansion

  • Guglielmo VenturaEmail author
  • Mauro Perfetti
Chapter
Part of the International Cryogenics Monograph Series book series (ICMS)

Abstract

All solid materials, when cooled to low temperatures experience a change in physical dimensions which called “thermal contraction” and is typically lower than 1 % in volume in the 4–300 K temperature range. Although the effect is small, it can have a heavy impact on the design of cryogenic devices. The thermal contraction of different materials may vary by as much as an order of magnitude: since cryogenic devices are constructed at room temperature with a lot of different materials, one of the major concerns is the effect of the different thermal contraction and the resulting thermal stress that may occur when two dissimilar materials are bonded together. In this chapter, theory of thermal contraction is reported in Sect.  1.2. Section  1.3 is devoted to the phenomenon of negative thermal expansion and its applications.

Keywords

Thermal Expansion Thermal Contraction Negative Thermal Expansion Anharmonic Term Constant Pressure Heat Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt. Rinehart and Winston, New York (1976)Google Scholar
  2. 2.
    Grima, J.N., Zammit, V., Gatt, R.: Negative thermal expansion. Xjenza 11, 17–29 (2006)Google Scholar
  3. 3.
    Wallace, D.C.: Melting of elements. Proc. R. Soc. Lond. A 433(1889), 631–661 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    Parshukov, A.: Measurement of the Gruneisen coefficients and their dependence on the volume of certain metals. Fiz. Tverd. Tela 27(4), 1228–1232 (1985)Google Scholar
  5. 5.
    Magomedov, M.: Atomic interaction parameters for lanthanides and actinides. Russ. J. Inorg. Chem. 52(12), 1953–1962 (2007)CrossRefGoogle Scholar
  6. 6.
    Moruzzi, V., Janak, J., Schwarz, K.: Calculated thermal properties of metals. Phys. Rev. B 37(2), 790 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    Singh, H.: Determination of thermal expansion of germanium, rhodium and iridium by X-rays. Acta Crystallogr. A Cryst. Phys. Diffr. Theoret. Gen. Crystallogr. 24(4), 469–471 (1968)ADSCrossRefGoogle Scholar
  8. 8.
    Manghnani, M.H., Katahara, K., Fisher, E.S.: Ultrasonic equation of state of rhenium. Phys. Rev. B 9(4), 1421 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    Rao, R.R., Ramanand, A.: Thermal expansion and bulk modulus of cobalt. J. Low Temp. Phys. 26(3–4), 365–377 (1977)ADSGoogle Scholar
  10. 10.
    Hamlin, J., Tissen, V., Schilling, J.: Superconductivity at 20 K in yttrium metal at pressures exceeding 1Mbar. Phys. C 451(2), 82–85 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    White, G.K., Collins, J.G.: Thermal expansion of copper, silver, and gold at low temperatures. J. Low Temp. Phys. 7(1–2), 43–75 (1972). doi: 10.1007/bf00629120 ADSCrossRefGoogle Scholar
  12. 12.
    White, G., Meeson, P.: Experimental Techniques in Low-Temperature Physics. Clarendon Press, Oxford (2002)Google Scholar
  13. 13.
    Corruccini, R.J., Gniewek, J.J.: Thermal expansion of technical solids at low temperatures: a compilation from the literature. National Bureau of Standards, US Department of Commerce (1961)Google Scholar
  14. 14.
    Reed, R.P., Clark, A.F.: Materials at Low Temperatures. American Society for Metals, Ohio, (1983)Google Scholar
  15. 15.
    Kirby, R.K.: Thermal expansion of polytetrafluoroethylene (Teflon) from −190 to + 300 C. J. Res. Nat. Bur. Stan. 57(2), 91–94 (1956)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Laquer, H.L.: Low temperature thermal expansion of various materials. Technical information Service (AEC), Oak Ridge, TN (1952)Google Scholar
  17. 17.
    Marquardt, E., Le, J., Radebaugh, R.: 11th International Cryocooler Conference June 20–22, 2000 Keystone, Co. Cryogenic Material Properties Database, National Institute of Standards and Technology Boulder, COGoogle Scholar
  18. 18.
    Hahn, T.A.: Thermal expansion of copper from 20 to 800 K—Standard reference material 736. J. Appl. Phys. 41(13), 5096–5101 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    Clark, A.: Low temperature thermal expansion of some metallic alloys. Cryogenics 8(5), 282–289 (1968)ADSCrossRefGoogle Scholar
  20. 20.
    Dahlerup-Petersen, K., Perrot, A.: Properties of Organic Composite Materials at Cryogenic Temperatures. CERN, Geneva (1979)Google Scholar
  21. 21.
    Clark, A., Fujii, G., Ranney, M.: The thermal expansion of several materials for superconducting magnets. IEEE Trans. Magn. 17(5), 2316–2319 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    Arp, V., Wilson, J., Winrich, L., Sikora, P.: Thermal expansion of some engineering materials from 20 to 293 K. Cryogenics 2(4), 230–235 (1962)ADSCrossRefGoogle Scholar
  23. 23.
    Hartwig, G.: Low-temperature properties of epoxy resins and composites. In: Timmerhaus, K.D., Reed, R.P., Clark, A.F. (eds.) Advances in Cryogenic Engineering, pp. 17–36. Springer, New York (1978)Google Scholar
  24. 24.
    Guillaume, C.: Open innovation challenges. Nature 131, 658 (1933)ADSCrossRefGoogle Scholar
  25. 25.
    Guillaume, C.É.: Recherches sur les aciers au nickel. Dilatations aux temperatures elevees; resistance electrique. CR Acad. Sci 125(235), 18 (1897)Google Scholar
  26. 26.
    Chikazumi, S.: Invar anomalies. J. Magn. Magn. Mater. 10(2), 113–119 (1979)ADSCrossRefGoogle Scholar
  27. 27.
    Schlosser, W., Graham, G., Meincke, P.: The temperature and magnetic field dependence of the forced magnetostriction and thermal expansion of Invar. J. Phys. Chem. Solids 32(5), 927–938 (1971)ADSCrossRefGoogle Scholar
  28. 28.
    Manosa, L., Saunders, G., Rahdi, H., Kawald, U., Pelzl, J., Bach, H.: Longitudinal acoustic mode softening and Invar behaviour in Fe72Pt28. J. Phys.: Condens. Matter 3(14), 2273 (1991)ADSGoogle Scholar
  29. 29.
    Manosa, L., Saunders, G., Rahdi, H., Kawald, U., Pelzl, J., Bach, H.: Acoustic-mode vibrational anharmonicity related to the anomalous thermal expansion of Invar iron alloys. Phys. Rev. B 45(5), 2224 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    Saunders, G., Senin, H., Sidek, H., Pelzl, J.: Third-order elastic constants, vibrational anharmonicity, and the Invar behavior of the Fe72Pt28 alloy. Phys. Rev. B 48(21), 15801 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    van Schilfgaarde, M., Abrikosov, I., Johansson, B.: Origin of the Invar effect in iron-nickel alloys. Nature 400(6739), 46–49 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Kainuma, R., Wang, J., Omori, T., Sutou, Y., Ishida, K.: Invar-type effect induced by cold-rolling deformation in shape memory alloys. Appl. Phys. Lett. 80(23), 4348–4350 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    Collocott, S., White, G.: Thermal expansion and heat capacity of some stainless steels and FeNi alloys. Cryogenics 26(7), 402–405 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    Harding, G., Lanchester, P., Street, R.: The low temperature magnetic thermal expansion of CuCl2. 2H2O. J. Phys. C: Solid State Phys. 4(17), 2923 (1971)ADSCrossRefGoogle Scholar
  35. 35.
    Aliev, F., Villar, R., Vieira, S., de la Torre, M.L., Scolozdra, R., Maple, M.: Energy gap of the ground state of CeNiSn caused by local and long-range magnetic-moment interactions. Phys. Rev. B 47(2), 769 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    White, G.K.: Phase transitions and the thermal expansion of holmium. J. Phys.: Condens. Matter 1(39), 6987 (1989)ADSGoogle Scholar
  37. 37.
    Gignoux, D., Givord, D., Givord, F., Lemaire, R.: Invar properties in the rare earth-3d transition metal alloys. J. Magn. Magn. Mater. 10(2), 288–293 (1979)ADSCrossRefGoogle Scholar
  38. 38.
    Tino, Y., Iguchi, Y.: Zero or negative thermal expansion of Fe-Pd alloys and the cause of Invar characteristic. J. Magn. Magn. Mater. 31, 117–118 (1983)ADSCrossRefGoogle Scholar
  39. 39.
    Hao, Y., Gao, Y., Wang, B., Qu, J., Li, Y., Hu, J., Deng, J.: Negative thermal expansion and magnetic properties of Y2Al3Fe14-xMnx. Appl. Phys. Lett. 78(21), 3277–3279 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Hao, Y., Zhao, M., Zhou, Y., Hu, J.: Negative thermal expansion and spontaneous volume magnetostriction of Tb2Fe16Cr compound. Scripta Mater. 53(3), 357–360 (2005)CrossRefGoogle Scholar
  41. 41.
    Hao, Y., Zhou, Y., Zhao, M.: Negative thermal expansion and spontaneous magnetostriction of Dy2AlFe10Mn6 compound. Adv. Eng. Mater. 7(6), 517–520 (2005)CrossRefGoogle Scholar
  42. 42.
    Yan-Ming, H., Yan, Z., Miao, Z.: Spontaneous magnetostriction of Dy2AlFe13Mn3 compound. Chin. Phys. 14(7), 1449 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Yan-Ming, H., Miao, Z., Yan, Z.: Spontaneous magnetostriction of Y2Fe16Al compound. Chin. Phys. 14(4), 818 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Kmety, C.R., Manson, J.L., Huang, Q., Lynn, J.W., Erwin, R.W., Miller, J.S., Epstein, A.J.: Collinear ferromagnetism and spin orientation in the molecule-based magnets M[N(CN)2]2 (M = Co, Ni). Phys. Rev. B 60(1), 60 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    Hartwig, G.: Polymer Properties at Room and Cryogenic Temperatures. Springer, New York (1994)Google Scholar
  46. 46.
    Wetherhold, R.C., Wang, J.: Tailoring thermal deformation by using layered beams. Compos. Sci. Technol. 53(1), 1–6 (1995)CrossRefGoogle Scholar
  47. 47.
    Wetherhold, R.C., Wang, J.: Controlling thermal deformation by using laminated plates. Compos. B Eng. 27(1), 51–57 (1996)CrossRefGoogle Scholar
  48. 48.
    Berthou, H., Neumann, V., Dan, J., Hintermann, H.: Mechanically enhanced capillary columns. Surf. Coat. Technol. 61(1), 93–96 (1993)CrossRefGoogle Scholar
  49. 49.
    Holzer, H., Dunand, D.: Processing, structure and thermal expansion of metal matrix composites containing zirconium tungstate. In: 4th International Conference on Composite Engineering, Hawaii 1997Google Scholar
  50. 50.
    Yamanaka, A., Kashima, T., Nago, S., Hosoyama, K., Takao, T., Sato, S., Takeo, M.: Coil bobbin composed of high strength polyethylene fiber reinforced plastics for a stable high field superconducting magnet. Phys. C 372, 1447–1450 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    Takeo, M., Sato, S., Matsuo, M., Kiss, T., Takao, T., Yamanaka, A., Kashima, T., Mito, T., Minamizato, K.: Dependence on winding tensions for stability of a superconducting coil. Cryogenics 43(10), 649–658 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    Cui, L.S., Schrooten, J., Zheng, Y.J.: Effects of additional reinforcing fibers on the interface quality of SMA wire/epoxy composites. In: Materials Science Forum 2005, pp. 2047–2050. Trans Tech Publications (2005)Google Scholar
  53. 53.
    Versluis, A., Douglas, W.H., Sakaguchi, R.L.: Thermal expansion coefficient of dental composites measured with strain gauges. Dent. Mater. 12(5), 290–294 (1996)CrossRefGoogle Scholar
  54. 54.
    Collins, E.G., Richter, S.: Linear-quadratic-gaussian-based controller design for Hubble space telescope. J. Guid. Control Dyn. 18(2), 208–213 (1995)ADSCrossRefGoogle Scholar
  55. 55.
    Wei, Z., Yu, Y., Xing, H., Zhuo, Z., Wu, Y., Zhang, L., Zheng, W., Zhang, Y.: Fabrication of chirped fiber grating with adjustable chirp and fixed central wavelength. IEEE Photonics Technol. Lett. 13(8), 821–823 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    Mavoori, H., Jin, S., Espindola, R., Strasser, T.: Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating based reconfigurable add drop devices. Opt. Lett. 24(11), 714–716 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    Ngo, N., Li, S., Zheng, R., Tjin, S., Shum, P.: Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating. J. Lightwave Technol. 21(6), 1568 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    Evans, J., Hanson, P., Ibberson, R., Duan, N., Kameswari, U., Sleight, A.: Low-temperature oxygen migration and negative thermal expansion in ZrW2-xMoxO8. J. Am. Chem. Soc. 122(36), 8694–8699 (2000)CrossRefGoogle Scholar
  59. 59.
    Evans, J.S., Hu, Z., Jorgensen, J., Argyriou, D., Short, S., Sleight, A.: Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8. Science 275(5296), 61–65 (1997)CrossRefGoogle Scholar
  60. 60.
    Kintaka, K., Nishii, J., Kawamoto, Y., Sakamoto, A., Kazansky, P.G.: Temperature sensitivity of Ge-B-SiO2 waveguide Bragg gratings on a crystallized glass substrate. Opt. Lett. 27(16), 1394–1396 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    Barrera, G., Bruno, J., Barron, T., Allan, N.: Negative thermal expansion. J. Phys.: Condens. Matter 17(4), R217 (2005)ADSGoogle Scholar
  62. 62.
    Sleight, A.: Compounds that contract on heating. Inorg. Chem. 37(12), 2854–2860 (1998)CrossRefGoogle Scholar
  63. 63.
    Huang, R., Xu, W., Xu, X., Li, L., Pan, X., Evans, D.: Negative thermal expansion and electrical properties of Mn3(Cu0.6NbxGe0.4− x)N (x = 0.05–0.25) compounds. Mater. Lett. 62(16), 2381–2384 (2008)CrossRefGoogle Scholar
  64. 64.
    Huang, R., Wu, Z., Yang, H., Chen, Z., Chu, X., Li, L.: Mechanical and transport properties of low-temperature negative thermal expansion material Mn3CuN co-doped with Ge and Si. Cryogenics 50(11), 750–753 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Baughman, R., Galvao, D.: Negative volumetric thermal expansion for proposed hinged phases. Chem. Phys. Lett. 240(1), 180–184 (1995)ADSCrossRefGoogle Scholar
  66. 66.
    Evans, J.O.: Negative thermal expansion materials†. J. Chem. Soc., Dalton Trans. 19, 3317–3326 (1999)CrossRefGoogle Scholar
  67. 67.
    Sleight, A.W.: Negative thermal expansion materials. Curr. Opin. Solid State Mater. Sci. 3(2), 128–131 (1998)ADSCrossRefGoogle Scholar
  68. 68.
    Tao, J., Sleight, A.: The role of rigid unit modes in negative thermal expansion. J. Solid State Chem. 173(2), 442–448 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    Miller, W., Mackenzie, D., Smith, C., Evans, K.: A generalised scale-independent mechanism for tailoring of thermal expansivity: Positive and negative. Mech. Mater. 40(4), 351–361 (2008)CrossRefGoogle Scholar
  70. 70.
    Palumbo, N., Smith, C., Miller, W., Evans, K.: Near-zero thermal expansivity 2-D lattice structures: performance in terms of mass and mechanical properties. Acta Mater. 59(6), 2392–2403 (2011)CrossRefGoogle Scholar
  71. 71.
    Steeves, C.A., Dos Santos E Lucato, S.L., He, M., Antinucci, E., Hutchinson, J.W., Evans, A.G.: Concepts for structurally robust materials that combine low thermal expansion with high stiffness. J. Mech. Phys. Solids 55(9), 1803–1822 (2007)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.INFNRomeItaly
  2. 2.Dipartimento di ChimicaUniversità di FirenzeSesto FiorentinoItaly

Personalised recommendations