Skip to main content

Climate Change and Biotechnology: Toolkit for Food Fish Security

  • Chapter
  • First Online:
Vulnerability of Agriculture, Water and Fisheries to Climate Change

Abstract

Climate change (CC) is a reality! It is a great threat to fisheries production especially in Africa that is characterized with normal climate variability phenomenon. Capture fisheries both in marine and freshwater are greatly impacted, resulting in real negative consequences on fish and fish products availability, and the livelihood of fisheries dependent individuals and communities. Some basic problems faced are genetic erosion especially on the endemic species that have adaptive features under negative effect of CC; decline in capture fisheries due to CC variability with other anthropogenic activities; and nutrition insecurity due to malnutrition or under-nutrition. The primary concern is how to mitigate the effects of CC on the decline of capture fisheries through sustainable fisheries and aquaculture production; genetic erosion through breed conservation; provision of sustainable food fish security to solve food fish demand that outstrips fish supply of ever-increasing human population. However, development of technology to improve fish health, to help restore and protect environments, to extend the range of aquatic species and to improve management and conservation of wild stock will be of great benefit to achieve fish and fish products security. Technology strategies such as animal genetic conservation, selective breeding, hybridization, tissue culture and genetic manipulation have been recently employed in developed economies as panacea to myriads of agri-food insecurity. This paper presents biotechnology approaches as toolkit to alleviate the menace of CC and increase fish and fish products for sustainable production, malnutrition solution and enhance the livelihood of fisheries dependent individuals or communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeyemo AA, Oladosu GA, Ayinla AO (1994) Growth and survival of fry of African catfish species, Clarias gariepinus Burchell, Heterobranchus bidorsalis Geoffery and Heteroclarias reared on Moina dubia in comparison with other first feed sources. Aquaculture 119:41–45

    Article  Google Scholar 

  • Agnèse JF, Teugels GG (2001) Genetic evidence for monophyly of the genus Heterobranchus and paraphyly of the genus Clarias (Siluriformes, Clariidae). Copea 2:548–552

    Article  Google Scholar 

  • Aluko PO (1995) Growth characteristics of first, second and backcross generations of the hybrids between Heterobranchus longifilis and Clarias anguillaris. National Institute for Freshwater Fisheries Research Annual Report, New Bussa, Nigeria, pp 74–78

    Google Scholar 

  • Amhed GU, Sarder MRI (1994) Growth of hybrid catfishes under different supplemental diets. In: Chou LM, Munro AD, Lam TJ, Chen TW, Cheong LKK, Ding JK, Hooi KK, Khoo HW, Phang VPE, Shim KF, Tan CH (eds) The third Asian fisheries forum. Asian Fisheries Society, Manila

    Google Scholar 

  • Anderson ED, Mourich DV, Fahrenkrug SC, LaPatra S, Leong J (1996) Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Mol Mar Biol Biotechnol 5:114–122

    CAS  Google Scholar 

  • Andreae MO (1995) Climate effects of changing atmospheric aerosol levels. In: Henderson-Sellers A (ed) World survey of climatology, vol 16. Future climates of the world: a modelling perspective. Elsevier, Amsterdam

    Google Scholar 

  • Blench R, Marriage Z (1999) Drought and livestock in semi-arid Africa and southwest Asia. Working paper 117. Overseas Development Institute, London, 138 pp

    Google Scholar 

  • Campton DE (1987) Natural hybridization and introgression in fishes. In: Ryman N, Utter F (eds) Population genetics & fishery management. University of Washington Press, Seattle, pp 161–192

    Google Scholar 

  • CGRFA (Commission on Genetic Resources for Food and Agriculture) (2007) The state of the world’s animal genetic resources for food and agriculture. FAO, Rome, 523 pp

    Google Scholar 

  • Chen TT, Lu JK, Shamblott MJ, Cheng CM, Lin CM, Burns JC, Reimschuessel R, Chatakondi N, Dunham RA (1995) Transgenic fish: ideal models for basic research and biotechnological applications. Zool Stud 34(21):5–234

    Google Scholar 

  • Chevassus B (1983) Hybridisation in fish. Aquaculture 33:245–262

    Article  Google Scholar 

  • Clark AJ, Archibald AL, McClenghan M, Simons JP, Whitelow CBA, Wilmut I (1990) The germ line manipulation of livestock: progress during the last five years. Proc N Z Soc Anim Prod 50:167–180

    Google Scholar 

  • Colombo L, Barbaro A, Francescon A, Libertini A, Benedetti P, Balla Valle L, Pazzaglia M, Pugi L, Argenton F, Bortolussi M, Belvedere P (1996) Potential gains through genetic improvements: chromosome set manipulation and hybridization. In: Chatain B, Saroglia M, Sweetman J, Lavens P (eds) Proceedings of the international workshop on seabass and seabream culture: problems and prospects. International workshop, Verona, Italy, 16/18-10-1996. Published by European Aquaculture Society, Oostende, Belgium, pp 343–362

    Google Scholar 

  • CropBiotech Net (2008) Climate change and biotechnology. http://www.monsanto.co.uk/news/ukshowlib.phtml?uid=13029

  • Cunningham EP (1999) Recent developments in biotechnology as they relate to animal genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture. FAO, Rome

    Google Scholar 

  • Curtis TA, Sessions FW, Bury D, Rezk M, Dunham RA (1987) Induction of polyploidy in striped bass, white bass and their hybrids with hydrostatic pressure. Proc Ann Conf Southeast Assoc Fish Wildl Agencies 41:63–69

    Google Scholar 

  • Danzmann RG, Jackson TR, Ferguson MM (1999) Epistasis in allelic expression at upper temperature tolerance QTL in rainbow trout. Aquaculture 173:45–58

    Article  CAS  Google Scholar 

  • Davis GP, DeNise SK (1998) The impact of genetic markers on selection. J Anim Sci 76:2331–2339

    CAS  Google Scholar 

  • Davis GP, Hetzel DJS (2000) Integrating molecular genetic technology with traditional approaches for genetic improvement in aquaculture species. Aquacult Res 31:3–10

    Article  Google Scholar 

  • Delgado C, Rosegrant M, Steinfield H, Ehui S, Courbois C (1999) Livestock to 2020; the next food revolution. Food, agriculture and environmental discussion paper 28. IFPRI/FAO/ILRI, Washington, DC, USA

    Google Scholar 

  • Duce RA (1995) Sources, distributions and fluxes of mineral aerosols and their relationship to climate. In: Charlson RJ, Heintzenberg J (eds) Aerosol forcing of climate. Wiley, New York, pp 43–72

    Google Scholar 

  • Dunham RA (2004) Aquaculture and fisheries biotechnology: genetic approaches. CABI Publishing, Wallingford, pp 385

    Book  Google Scholar 

  • Dunham RA, Majumdar K, Hallerman E, Bartley D, Mair G, Hulata G, Liu Z, Pongthana N, Bakos J, Penman D, Gupta M, Rothlisberg P, Hoerstgen-Schwark G (2001) Review of the status of aquaculture genetics. In: Subasinghe RP, Bueno P, Phillips MJ, Hough C, McGladdery SE, Arthur JR (eds) Technical proceedings of the conference on aquaculture in the third millenium, Bangkok, Thailand, 20–25 Feb 2000. NACA/FAO, Bangkok/Rome, pp 129–157

    Google Scholar 

  • FAO (1996) Report on world’s plant genetic resource. Food and Agricultural Organization of the United Nations, Rome, May 2006

    Google Scholar 

  • FAO (2000) Electronic forum on biotechnology in food and agriculture: how appropriate are currently available biotechnologies for the fishery sector in developing countries? Food and Agriculture Organization of the United Nations’ conference from 1 Aug–8 Oct 2000

    Google Scholar 

  • FAO (2009) The state of world fisheries and aquaculture, 2008. FAO Fisheries and Aquaculture Department, Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Fletcher GL, Shears MA, King MJ, Davies PL, Hew CL (1988) Evidence for antifreeze protein gene transfer in Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 45:352–357

    Article  CAS  Google Scholar 

  • Fletcher GL, Davies PL, Hew CL (1992) Genetic engineering of freeze resistant Atlantic salmon. In: Hew CL, Fletcher GL (eds) Transgenic fish. World Scientific, Singapore, pp 190–208

    Chapter  Google Scholar 

  • Gong Z, Hew CL (1995) Transgenic fish in aquaculture and development biology. Cur Top Dev Biol 30:177–214

    Article  CAS  Google Scholar 

  • Hetzel DJS, Moore SS (1996) Applications of molecular genetic technologies in livestock improvement. In: Exploring approaches to research in the animal sciences in Vietnam. ACIAR proceedings no. 68. ACIAR, Canberra, pp 115–119

    Google Scholar 

  • Hoffman I (2010) Climate change and the characterization, breeding and conservation of animal genetic resources. Anim Genet 41 (Suppl. 1):32–46. http://www.fao.org/docrep/012/al188e/al188e00.pdf

  • Hughes CR, Queller DC (1993) Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism. Mol Ecol 2:131–137

    Article  CAS  Google Scholar 

  • Hulata G (2001) Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies. Genetica 111:155–173

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: impacts, adaptation vulnerability. Summary for policy makers. Online at: http://klima.hr/razno/news/IPCCWG2_0407.pdf

  • Jiang Y (1993) Transgenic fish – Gene transfer to increase disease and cold resistance. Aquaculture 111:31–40

    Article  CAS  Google Scholar 

  • Jones PG, Thornton PK (2009) Croppers to livestock keepers: livelihood transitions to 2050 in Africa due to climate change. Environ Sci Policy 12:427–437

    Article  Google Scholar 

  • Jotoafrika (2009) Climate change and the threat to African food security, Issue 1, July 2009

    Google Scholar 

  • Ju Z, Karsi A, Kocabas A, Patterson A, Li P, Cao D, Dunham R, Liu Z (2000) Transcriptome analysis of channel catfish (Ictalurus punctatus): genes and expression profile from the brain. Gene 261:373–382

    Article  CAS  Google Scholar 

  • Kashi Y, Hallerman E, Soller M (1990) Marker-assisted selection of candidate bulls for progeny testing programmes. Anim Prod 51:63–74

    Article  Google Scholar 

  • Kerr RJ, Frisch JE, Kinghorn BP (1994) Evidence for a major gene for tick resistance in cattle. In: Proceedings of the 5th world congress on genetics applied to livestock production, Guelph, Canada, 7–12 Aug 1994, vol 20. International committee for world congress on genetics applied to livestock production, Guelph, ON, Canada, pp 265–268

    Google Scholar 

  • Kincaid HL (1983) Results from six generations of selection for accelerated growth rate in a rainbow trout population [abstract]. In: The future of aquaculture in North America. Fish Culture Section of the American Fisheries Society, Bethesda, Maryland, pp 26–27

    Google Scholar 

  • Knibb W (1997) Risk from genetically engineered and modified marine fish. Transgenic Res 6:59–67

    Article  CAS  Google Scholar 

  • Knibb W, Gorshkova G, Gorshkov S (1996) Potentials gains through genetic improvement: selection and transgenesis. In: Chatain B, Saroglia M, Sweetman J, Lavens P (eds) Seabass and seabream culture: problems and prospects, International workshop, Verona, Italy, 16/18-10-1996. Published by European Aquaculture Society, Oostende, Belgium, pp 175–188

    Google Scholar 

  • Korver S, van der Steen HAM, van Arendonk JAM, Bakker H, Brascamp EW, Dommerholt J (1988) Advances in animal breeding. Pudoc, Wageningen, 33 pp

    Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  Google Scholar 

  • Legendre M, Teugels GG, Canty C, Jalabert B (1992) A comparative study on morphology, growth rate and reproduction of Clarias gariepinus (Burchell 1822), Heterobranchus longifilis (Valenciermes, 1840), and their reciprocal hybrids (Pisces: Clariidae). J Fish Biol 40:59–79

    Article  Google Scholar 

  • Lenormand S, Slembrouck J, Pouyaud L, Subadgja J, Legendre M (1988) Evaluation of hybridisation in five Clarias species (Siluriformes, Clariidae) of African (C. gariepinus) and Asian origin (C. batrachus, C. meladerma; C. nieuhofii and C. teijsmanni). In: Legendre M, Pariselle A (eds) Proceedings of the mid-term workshop of the “Catfish Asia Project”: the biological diversity and aquaculture of Clariid and Pangasiid catfishes in South-East Asia, Cantho, Vietnam, 11–15 May, pp 195–209

    Google Scholar 

  • Liu ZJ, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37

    Article  CAS  Google Scholar 

  • Liu Q, Goudie CA, Simco BA, Davis KB, Morizot DC (1992) Gene-centromere mapping of six enzyme loci in gynogenetic channel catfish. J Hered 83:245–248

    Google Scholar 

  • Liu Z, Li P, Argue BJ, Dunham RA (1998a) Inheritance of RAPD markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and their F1, F2 and backcross hybrids. Anim Genet 29:58–62

    Article  CAS  Google Scholar 

  • Liu ZJ, Nichols A, Li P, Dunham R (1998b) Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and their Fl, F2 and backcross hybrids. Mol Gen Genet 258:260–268

    Article  CAS  Google Scholar 

  • Liu Z, Karsi A, Dunham RA (1999a) Development of polymorphic EST markers suitable for genetic linkage mapping of catfish. Mar Biotechnol 1:437–447

    Article  CAS  Google Scholar 

  • Liu ZJ, Tan G, Kucuktas H, Li P, Karsi A, Yant DR, Dunham RA (1999b) High levels of conservation at microsatellite loci among ictalurid catfishes. J Hered 90:307–312

    Article  CAS  Google Scholar 

  • Liu ZJ, Tan G, Li P, Dunham RA (1999c) Transcribed dinucleotide dicrosatellites and their associated genes from channel catfish, Ictalurus punctatus. Biochem Biophys Res Commun 259:190–194

    Article  CAS  Google Scholar 

  • Liu ZJ, Karsi A, Li P, Cao D, Dunham RA (2003) An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics 165:687–694

    CAS  Google Scholar 

  • Maclean N, Rahman A (1994) Transgenic fish. In: animals with Novel Genes, transgenes in fish. Transgenic Res 5:147–166

    Google Scholar 

  • Madu CT, Mohammed S, Mezie A, Issa J, Ita EO (1992) Comparative growth, survival and morphometric characteristic of Clarias gariepinus, Heterobranchus bidorsalis and their hybrid fingerlings. NIFFR Annual Report, pp 56–61

    Google Scholar 

  • McEvoy TG, Gannon F, Sreenan JM (1992) Gene transfer in fish: potential and practice. Anim Biotechnol 3(21):1–243

    Google Scholar 

  • Meuwissen T, Arendonk J (1992) Potential improvements in rate of genetic gain from marker assisted selection in dairy cattle breeding schemes. J Dairy Sci 75:1651–1659

    Article  CAS  Google Scholar 

  • Meuwissen THE, Goddard ME (1996) The use of marker haplotypes in animal breeding schemes. Genet Select Evol 28:161–176

    Article  Google Scholar 

  • Miklas PN, Afanador L, Kelly JD (1996) Recombination-facilitated RAPD marker-assisted selection for disease resistance in common bean. Crop Sci 36:86–90

    Article  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  Google Scholar 

  • Nicholson SE, Grist JP (2001) A conceptual model for understanding rainfall variability in the West African Sahel on interannual and interdecadal timescales. Int J Climatol 21:1733–1757

    Article  Google Scholar 

  • Niemann H, Halter R, Paul D (1994) Gene transfer in cattle and sheep: a summary perspective. In: Proceedings of the 5th world congress on genetics applied to livestock production, Guelph, Canada, 7–12 Aug 1994, vol 21. International Committee for World Congress on genetics applied to livestock production, Guelph, ON, Canada, pp 339–346

    Google Scholar 

  • Nwadukwe FO (1995) Hatchery propagations of five hybrid groups by artificial hybridization of Clarias gariepinus (B) and Heterobranchus longifilis (Val) (Clariidae) using dry, powdered carp pituitary hormone. J Aquac Trop 10:1–11

    Google Scholar 

  • Olaniyi WA (2008) Induction of triploidy, gynogenesis and androgenesis in African catfish (Clarias gariepinus Burchell). M.Sc. thesis, Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria

    Google Scholar 

  • Omitogun OG (2010) Biotechnology: the silver bullet for agricultural productivity, Inaugural lecture series 228 (Obafemi Awolowo University). Obafemi Awolowo University Press Ltd., Ile-Ife

    Google Scholar 

  • Palmiter RD, Brinster RL (1986) Gene – Line transformation of mice. Annu Rev Genet 20:465–499

    Article  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors, using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  Google Scholar 

  • Powers DA, Chen TT, Dunham RA (1992a) Transgenic fish. In: Murray JAH (ed) Transgenesis. Applications of gene transfer. Wiley, Chichester, pp 233–249

    Google Scholar 

  • Powers DA, Cole T, Creech K, Chen TT, Lin CM, Kight K, Dunham R (1992b) Electroporation: a method for transferring genes into the gametes of zebrafish, Brachydanio rerio, channel catfish, Ictalurus punctatus, and common carp, Cyprinus carpio. Mol Mar Biol Biotechnol 1:301–309

    CAS  Google Scholar 

  • Purdom CE (1993) Genetics and fish breeding. Chapman & Hall, London/Glasgow/New York/Tokyo/Melbourne/Madras, 277pp

    Google Scholar 

  • Queller DC, Strassmann JE, Hughes CR (1993) Microsatellites and kinship. Trends Ecol Evol 8:285–288

    Article  CAS  Google Scholar 

  • Rahman MA, Bharda A, Begum N, Islam MS, Hussain MG (1995) Production of hybrid vigor through cross breeding between Clarias batrachus Lin. and Clarias gariepinus Bur. Aquaculture 138:125–130

    Article  Google Scholar 

  • Rege JEO (2005) Biotechnology options for improving livestock production in developing countries, with special reference to sub-Saharan Africa. International Livestock Centre for Africa (ILCA) Addis Ababa, Ethiopia. http://www.ilri.org

  • Ropelewski C, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Salami AA, Fagbenro OA, Sydenham DHJ (1993) The production and growth of Clariid Catfish hybrids in concrete tanks. Isreali J Aqua-Bamidgeh 45(1):18–25

    Google Scholar 

  • Scholes B, Ajavon A, Nyong T, Tabo R, Vogel C, Ansorge I (2008) Global environmental change (including climate change and adaptation) in sub-Saharan Africa. ICSU ROA Science Plan, Seychelles. 27pp. Available at: http://www.icsu.org/africa/publications/copy_of_ICSUROASciencePlanonGlobalEnvironmentalChange.pdf

  • Smith C, Simpson SP (1986) The use of genetic polymorphisms in livestock improvement. J Anim Breed Genet 103:205–217

    Article  Google Scholar 

  • Soller M (1994) Marker-assisted selection – An overview. Anim Biotechnol 5:193–207

    Article  Google Scholar 

  • Sonaiya EB, Omitogun OG (2000) Regional and international cooperation for sustainable agrobiotechnology in Africa. In: Ogbadu GH, Onyenekwe DC (eds) Proceedings of the international conference on Biotechnology: commercialisation and food security, Abuja, Nigeria, 21–23 Oct 2000. pp 105–116

    Google Scholar 

  • Spelman RJ, Garrick DJ (1998) Genetic and economic responses for within-family marker-assisted selection in dairy cattle breeding schemes. J Dairy Sci 81:2942–2950

    Article  CAS  Google Scholar 

  • Sperling L (1987) The adoption of Camels by Samburu cattle herders. Nomadic Peoples 23:1–18

    Google Scholar 

  • Stromberg LD, Dudley JW, Rufener GK (1994) Comparing conventional early generation selection with molecular marker-assisted selection in maize. Crop Sci 34:1221–1225

    Article  Google Scholar 

  • Tan G, Karsi A, Li P, Kim S, Zheng X, Kucuktas H, Argue BJ, Dunham RA, Liu ZJ (1999) Polymorphic microsatellite markers in Ictalurus punctatus and related catfish species. Mol Ecol 59:190–194

    Google Scholar 

  • Tyson P, Fuchus R, Fu C, Lebel L, Mitra AP, Odada E, Perry J, Steffen W, Virji H (eds) (2002) Global-regional linkages in the earth system. Springer, Berlin/Heidelberg

    Google Scholar 

  • UNDP/UNSO (1997) Aridity zones and dryland populations: an assessment of population levels in the World’s drylands. United Nations Sudano-Sahelian Office/United Nations Development Programme, New York

    Google Scholar 

  • UNFCCC (United Nations Framework Convention on Climate Change) (1992) United Nations. Online at: http://unfccc.int/resource/docs/convkp/conveng.pdf

  • UNPP (2008) Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: the 2006 Revision and World Urbanization Prospects: the 2005 revision. http://www.un.org/esa/population/publications/WPP2006RevVol_III/WPP2006RevVol_III_final.pdf. Accessed 26 Mar 2008

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeay M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Wambugu F (1999) Why Africa needs agricultural biotech. Nature 400(6739):15–16. www.nature.com

  • Wang R, Zhang P, Gong Z, Hew CL (1995) Expression of the antifreeze protein gene in transgenic goldfish (Carassius auratus) and its implication in cold adaptation. Mol Mar Biol Biotechnol 4:20–26

    CAS  Google Scholar 

  • Weller JI (ed) (1994) Economic aspects of animal breeding. Chapman & Hall, London, 172 pp

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  Google Scholar 

  • WWF (2000) The Africa water vision for 2025: equitable and sustainable use of water for socioeconomic development. World Water Forum, The Hague. http://www.afdb.org/fileadmin/uploads/afdb/Documents/Generic-Documents/african%20water%20vision%202025%20to%20be%20sent%20to%20wwf5.pdf

  • Yiengar A, Müller F, Maclean N (1996) Regulation and expression of transgenes in fish – A review. Transgenic Res 5:147–166

    Article  Google Scholar 

  • Zhu Z, Li G, Chen S (1985) Novel gene transfer into the fertilized eggs of goldfish (Carassius auratus L. 1758). Z Angew lchthyol 1:31–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasiu Adekunle Olaniyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Olaniyi, W.A. (2014). Climate Change and Biotechnology: Toolkit for Food Fish Security. In: Behnassi, M., Syomiti Muteng'e, M., Ramachandran, G., Shelat, K. (eds) Vulnerability of Agriculture, Water and Fisheries to Climate Change. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8962-2_15

Download citation

Publish with us

Policies and ethics