Skip to main content

Abstract

There are many kinds of natural, oligo- and polymeric materials with very specific, almost unique properties. In the field of redox active secondary metabolites, the class of ‘condensed’ polyphenolic flavonoids, often referred to as proanthocyanidins or––at higher molecular weight––as tannins clearly stands out. Such substances are found in many edible berries and seeds, and are used extensively as food ingredients across the globe. As these compounds are oligomers or polymers of redox active monomers, they contain multiple redox sites, and hence show an extensive redox activity which often manifests itself in pronounced antioxidant properties. At the same time, the sheer number of phenol and (hydro-)quinone groups present in these molecules enables them to interact strongly with proteins via hydrogen bonding and in some instances even covalently. As a consequence, many of these natural products not only act as antioxidants, but also denature many proteins and enzymes and can even kill bacteria, fungi, and certain parasites. Ultimately, this unique combination of chemical reactivity and biological activity results in a number of apparent health benefits, which include antioxidant action but also the inhibition of digestive enzymes and the prevention of specific antimicrobial events. As such activities seem to be focused on the gastrointestinal tract, they are particularly interesting from the perspective of (a) antibacterial and anti-parasitic action in the gastrointestinal tract, (b) the control of the intestinal microflora, and (c) the control of nutrient uptake in the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52(1):79–104

    Article  CAS  PubMed  Google Scholar 

  • Beart JE, Lilley TH, Haslam E (1985) Polyphenol interactions. Part 2. Covalent binding of procyanidins to proteins during acid-catalysed decomposition; observations on some polymeric proanthocyanidins. J Chem Soc, Perkin Trans 2 (9):1439–1443

    Google Scholar 

  • Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133(10):3248S–3254S

    CAS  PubMed  Google Scholar 

  • Chen W, Fu C, Qin Y, Huang D (2009) One-pot depolymerizative extraction of proanthocyanidins from mangosteen pericarps. Food Chem 114(3):874–880

    Article  CAS  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26(8):1001–1043

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TP, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38(2):99–107

    Article  CAS  PubMed  Google Scholar 

  • Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23(2):174–181

    Article  CAS  PubMed  Google Scholar 

  • de la Iglesia R, Milagro FI, Campion J, Boque N, Martinez JA (2010) Healthy properties of proanthocyanidins. BioFactors 36(3):159–168

    Article  PubMed  Google Scholar 

  • De Pascual-Teresa S, Moreno DA, García-Viguera C (2010) Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci 11(4):1679–1703

    Article  PubMed Central  PubMed  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins–a final frontier in flavonoid research? New Phytol 165(1):9–28

    Article  CAS  PubMed  Google Scholar 

  • Erlejman AG, Fraga CG, Oteiza PI (2006) Procyanidins protect Caco-2 cells from bile acid- and oxidant-induced damage. Free Radical Biol Med 41(8):1247–1256

    Article  CAS  Google Scholar 

  • Ferreira D, Coleman CM (2011) Towards the synthesis of proanthocyanidins: half a century of innovation. Planta Med 77(11):1071–1085

    Article  CAS  PubMed  Google Scholar 

  • Fletcher AC, Porter LJ, Haslam E, Gupta RK (1977) Plant proanthocyanidins. Part 3. Conformational and configurational studies of natural procyanidins. J Chem Soc, Perkin Trans 1 (14):1628–1637

    Google Scholar 

  • Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med 31(6):435–445

    Article  CAS  PubMed  Google Scholar 

  • Gallina L, Dal Pozzo F, Galligioni V, Bombardelli E, Scagliarini A (2011) Inhibition of viral RNA synthesis in canine distemper virus infection by proanthocyanidin A2. Antiviral Res 92(3):447–452

    Article  CAS  PubMed  Google Scholar 

  • Geissman TA, Yoshimura NN (1966) Synthetic proanthocyanidin. Tetrahedron Lett 7(24):2669–2673

    Article  Google Scholar 

  • Haslam E (1974) Biogenetically patterned synthesis of procyanidins. J Chem Soc, Chem Commun 0(15):594–595

    Article  CAS  Google Scholar 

  • Iglesias J, Pazos M, Torres JL, Medina I (2012) Antioxidant mechanism of grape procyanidins in muscle tissues: redox interactions with endogenous ascorbic acid and alpha-tocopherol. Food Chem 134(4):1767–1774

    Article  CAS  PubMed  Google Scholar 

  • Kajiya K, Hojo H, Suzuki M, Nanjo F, Kumazawa S, Nakayama T (2004) Relationship between antibacterial activity of (+)-catechin derivatives and their interaction with a model membrane. J Agric Food Chem 52(6):1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Kajiya K, Kumazawa S, Nakayama T (2002) Effects of external factors on the interaction of tea catechins with lipid bilayers. Biosci Biotechnol Biochem 66(11):2330–2335

    Article  CAS  PubMed  Google Scholar 

  • Kalili KM, de Villiers A (2009) Off-line comprehensive 2-dimensional hydrophilic interaction× reversed phase liquid chromatography analysis of procyanidins. J Chromatogr A 1216(35):6274–6284

    Article  CAS  PubMed  Google Scholar 

  • Kashiwada Y, Nonaka G-I, Nishioka I (1986) Tannins and related compounds. XLV. Rhubarb. (5). Isolation and characterization of Flavan-3-ol and procyanidin glucosides. Chem Pharm Bull 34(8):3208–3222

    Article  CAS  Google Scholar 

  • Kelm MA, Hammerstone JF, Schmitz HH (2005) Identification and quantitation of flavanols and proanthocyanidins in foods: how good are the datas? Clin Dev Immunol 12(1):35–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim S, Nimni ME, Yang Z, Han B (2005) Chitosan/gelatin-based films crosslinked by proanthocyanidin. J Biomed Mater Res B Appl Biomater 75(2):442–450

    Article  PubMed  Google Scholar 

  • Kuzuhara T, Sei Y, Yamaguchi K, Suganuma M, Fujiki H (2006) DNA and RNA as new binding targets of green tea catechins. J Biol Chem 281(25):17446–17456

    Article  CAS  PubMed  Google Scholar 

  • Kuzuhara T, Tanabe A, Sei Y, Yamaguchi K, Suganuma M, Fujiki H (2007) Synergistic effects of multiple treatments, and both DNA and RNA direct bindings on, green tea catechins. Mol Carcinog 46(8):640–645

    Article  CAS  PubMed  Google Scholar 

  • Lazaro E, Castillo JA, Rafols C, Roses M, Clapes P, Torres JL (2007) Interaction of antioxidant biobased epicatechin conjugates with biomembrane models. J Agric Food Chem 55(8):2901–2905

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1 Suppl):230S–242S

    CAS  PubMed  Google Scholar 

  • Mehansho H, Butler LG, Carlson DM (1987) Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annu Rev Nutr 7:423–440

    Article  CAS  PubMed  Google Scholar 

  • Monagas M, Urpi-Sarda M, Sanchez-Patan F, Llorach R, Garrido I, Gomez-Cordoves C, Andres-Lacueva C, Bartolome B (2010) Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct 1(3):233–253

    Article  CAS  PubMed  Google Scholar 

  • Morimoto S, Nonaka G-I, Nishioka I (1986a) Tannins and related compounds. XXXIX. Procyanidin C-glucosides and an acylated Flavan-3-ol glucoside from the Barks of Cinnamomum cassia Blume and C. obtusifolium NEES. Chem Pharm Bull 34(2):643–649

    Article  CAS  Google Scholar 

  • Morimoto S, Nonaka G-I, Nishioka I (1986b) Tannins and related compounds. XXXVIII. Isolation and characterization of Flavan-3-ol glucosides and procyanidin oligomers from Cassia bark: Cinnamomum cassia Blume. Chem Pharm Bull 34(2):633–642

    Article  CAS  Google Scholar 

  • Oh HI, Hoff JE, Armstrong GS, Haff LA (1980) Hydrophobic interaction in tannin-protein complexes. J Agric Food Chem 28(2):394–398

    Article  CAS  Google Scholar 

  • Pan M-H, Lai C-S, Ho C-T (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1(1):15–31

    Article  CAS  PubMed  Google Scholar 

  • Paolocci F, Robbins MP, Madeo L, Arcioni S, Martens S, Damiani F (2007) Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression analysis, and genetic control of Leucoanthocyanidin 4-Reductase and Anthocyanidin Reductase genes in Lotus corniculatus. Plant Physiol 143(1):504–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plumb GW, De Pascual-Teresa S, Santos-Buelga C, Cheynier V, Williamson G (1998) Antioxidant properties of catechins and proanthocyanidins: effect of polymerisation, galloylation and glycosylation. Free Radical Res 29(4):351–358

    Article  CAS  Google Scholar 

  • Revesz K, Tutto A, Szelenyi P, Konta L (2011) Tea flavan-3-ols as modulating factors in endoplasmic reticulum function. Nutr Res 31(10):731–740

    Article  CAS  PubMed  Google Scholar 

  • Ricardo da Silva JM, Rigaud J, Cheynier V, Cheminat A, Moutounet M (1991) Procyanidin dimers and trimers from grape seeds. Phytochemistry 30(4):1259–1264

    Article  CAS  Google Scholar 

  • Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds–nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80(7):1094–1117

    Article  CAS  Google Scholar 

  • Sazuka M, Itoi T, Suzuki Y, Odani S, Koide T, Isemura M (1996) Evidence for the interaction between (−)-epigallocatechin gallate and human plasma proteins fibronectin, fibrinogen, and histidine-rich glycoprotein. Biosci Biotechnol Biochem 60(8):1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Schaart JG, Dubos C, De La Fuente IR, van Houwelingen AM, de Vos RC, Jonker HH, Xu W, Routaboul JM, Lepiniec L, Bovy AG (2013) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria x ananassa) fruits. New Phytol 197(2):454–467

    Article  CAS  PubMed  Google Scholar 

  • Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69(03):273–278

    Article  CAS  PubMed  Google Scholar 

  • Sharma SD, Katiyar SK (2010) Dietary grape seed proanthocyanidins inhibit UVB-induced cyclooxygenase-2 expression and other inflammatory mediators in UVB-exposed skin and skin tumors of SKH-1 hairless mice. Pharm Res 27(6):1092–1102

    Article  CAS  PubMed  Google Scholar 

  • Smith DF (2013) Benefits of flavanol-rich cocoa-derived products for mental well-being: a review. J Funct Foods 5(1):10–15

    Article  CAS  Google Scholar 

  • Todd JJ, Vodkin LO (1993) Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol 102(2):663–670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C-S, Vodkin L (1994) Extraction of RNA from tissues containing high levels of procyanidins that bind RNA. Plant Mol Biol Rep 12(2):132–145

    Article  CAS  Google Scholar 

  • Xu Z, Du P, Meiser P, Jacob C (2012) Proanthocyanidins: oligomeric structures with unique biochemical properties and great therapeutic promise. Nat Prod Commun 7(3):381–388

    CAS  PubMed  Google Scholar 

  • Yu X, Chu S, Hagerman AE, Lorigan GA (2011) Probing the interaction of polyphenols with lipid bilayers by solid-state NMR spectroscopy. J Agric Food Chem 59(12):6783–6789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ebrahimnejad, H., Burkholz, T., Jacob, C. (2014). Flavanols and Proanthocyanidins. In: Jacob, C., Kirsch, G., Slusarenko, A., Winyard, P., Burkholz, T. (eds) Recent Advances in Redox Active Plant and Microbial Products. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8953-0_8

Download citation

Publish with us

Policies and ethics