Advertisement

The Modern Art of Identification of Natural Substances in Whole Plants

  • Patrick Chaimbault
Chapter

Abstract

Oxidative reactions are essential for life but they also cause important stresses and cellular damages resulting in cancers, cardiovascular, or neurodegenerative diseases. Antioxidant secondary metabolites of plants can be involved in cell defense and one of the main sources of natural antioxidants is precisely food intake such as vegetables, fruits, or beverages like wine or tea. The isolation and identification of natural antioxidants from plants require different analytical methods and extraction procedures. This chapter gives an overview of the current techniques, including hyphenation of separative methods with mass spectrometry, used to purify and identify secondary metabolites of interest in plants.

Keywords

(Bio-)analytical methods Mass spectrometry Separation methods Structural Elucidation Supercritical liquid extraction 

References

  1. Abidi SL (1999) Reversed-phase retention characteristics of tocotrienol antioxidants. J Chromatogr A 844(1–2):67–75Google Scholar
  2. Adam M, Dobias P, Eisner A, Ventura K (2009) Extraction of antioxidants from plants using ultrasonic methods and their antioxidant capacity. J Sep Sci 32(2):288–294PubMedGoogle Scholar
  3. Agrafiotou P, Sotiropoulos S, Pappa-Louisi A (2009) Direct RP-HPLC determination of underivatized amino acids with online dual UV absorbance, fluorescence, and multiple electrochemical detection. J Sep Sci 32(7):949–954PubMedGoogle Scholar
  4. Alfaro MJ, Belanger JMR, Padilla FC, Pare JRJ (2003) Influence of solvent, matrix dielectric properties, and applied power on the liquid-phase microwave-assisted processes (MAP (TM)) extraction of ginger (Zingiber officinale). Food Res Int 36(5):499–504Google Scholar
  5. Altria KD (1996a) Fundamentals of capillary electrophoresis theory. In: Altria KD (ed) Capillary electrophoresis guidebook, methods in molecular biology, vol 52. Humana Press, Totowa, pp 3–13Google Scholar
  6. Altria KD (1996b) Methods in molecular biology, capillary electrophoresis guidebook. Humanan Press, TotowaGoogle Scholar
  7. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49(7):1041–1044PubMedGoogle Scholar
  8. Antonopoulos A, Herbreteau B, Lafosse M, Helbert W (2004) Comparative analysis of enzymatically digested kappa-carrageenans, using liquid chromatography on ion-exchange and porous graphitic carbon columns coupled to an evaporative light scattering detector. J Chromatogr A 1023(2):231–238PubMedGoogle Scholar
  9. Arnault I, Christides JP, Mandon N, Haffner T, Kahane R, Auger J (2003) High-performance ion-pair chromatography method for simultaneous analysis of alliin, deoxyalliin, allicin and dipeptide precursors in garlic products using multiple mass spectrometry and UV detection. J Chromatogr A 991(1):69–75PubMedGoogle Scholar
  10. Asa D (2006) Carbohydrate and oligosaccharide analysis with a universal HPLC detector. Am Lab 38(7):16Google Scholar
  11. Ashraf K, Mujeeb M, Ahmad A, Amir M, Mallick MN, Sharma D (2012) Validated HPTLC analysis method for quantification of variability in content of curcumin in Curcuma longa L (turmeric) collected from different geographical region of India. Asian Pac J Trop Biomed 2(2):S584–S588Google Scholar
  12. Augusto F, Lopes ALE, Zini CA (2003) Sampling and sample preparation for analysis of aromas and fragrances. Trac-Trend Anal Chem 22(3):160–169Google Scholar
  13. Augusto F, Poppi RJ, Pedroso MP, de Godoy LAF, Hantao LW (2010) GC × GC-FID for qualitative and quantitative analysis of perfumes. Lc Gc Eur 23(8):430Google Scholar
  14. Balz MK, Schulte E, Thier HP (1993) Simultaneous determination of Alpha-Tocopheryl Acetate, Tocopherols and Tocotrienols by Hplc with fluorescence detection in foods. Fett Wiss Technol 95(6):215–220Google Scholar
  15. Banerjee K, Patil SH, Dasgupta S, Oulkar DP, Patil SB, Savant R, Adsule PG (2008) Optimization of separation and detection conditions for the multiresidue analysis of pesticides in grapes by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 1190(1–2):350–357PubMedGoogle Scholar
  16. Beens J, Adahchour M, Vreuls RJJ, van Altena K, Brinkman UAT (2001) Simple, non-moving modulation interface for comprehensive two-dimensional gas chromatography. J Chromatogr A 919(1):127–132PubMedGoogle Scholar
  17. Beldean-Galea MS, Horga C, Coman MV (2010) Separation and determination of tocopherols in vegetable oils by solid phase extraction on porous polymers SPE cartridges and capillary gas chromatography analysis. Cent Eur J Chem 8(5):1108–1114Google Scholar
  18. Benova B, Adam M, Pavlikova P, Fischer J (2010) Supercritical fluid extraction of piceid, resveratrol and emodin from Japanese knotweed. J Supercrit Fluid 51(3):325–330Google Scholar
  19. Berthod A, Maryutina T, Spivakov B, Shpigun O, Sutherland IA (2009) Countercurrent chromatography in analytical chemistry (Iupac Technical Report). Pure Appl Chem 81(2):355–387Google Scholar
  20. Bertoncini F, Vendeuvre C, Thiebaut D (2005) Interest and applications of multidimensional gas chromatography for trace analysis in the petroleum industry. Oil Gas Sci Technol 60(6):937–950Google Scholar
  21. Bertsch W (2000) Two-dimensional gas chromatography. Concepts, instrumentation, and applications—Part 2: comprehensive two-dimensional gas chromatography. J High Resolut Chromatogr 23(3):167–181Google Scholar
  22. Bicchi C, Binello A, Rubiolo P (2000) Determination of phenolic diterpene antioxidants in rosemary (Rosmarinus officinalis L.) with different methods of extraction and analysis. Phytochem Anal 11(4):236–242Google Scholar
  23. Biesaga M, Ochnik U, Pyrzynska K (2009) Fast analysis of prominent flavonoids in tomato using a monolithic column and isocratic HPLC. J Sep Sci 32(15–16):2835–2840PubMedGoogle Scholar
  24. Blanch GP, Reglero G, Herraiz M (1995) Analysis of wine aroma by off-line and online supercritical-fluid extraction gas-chromatography. J Agr Food Chem 43(5):1251–1257Google Scholar
  25. Blasco AJ, Barrigas I, Gonzalez MC, Escarpa A (2005) Fast and simultaneous detection of prominent natural antioxidants using analytical microsystems for capillary electrophoresis with a glassy carbon electrode: a new gateway to food environments. Electrophoresis 26(24):4664–4673PubMedGoogle Scholar
  26. Boselli E, Velazco V, Caboni MF, Lercker G (2001) Pressurized liquid extraction of lipids for the determination of oxysterols in egg-containing food. J Chromatogr A 917(1–2):239–244PubMedGoogle Scholar
  27. Bryson N, Papillard D (2004) An introduction to OPLC—Operation and applications. Lc Gc Eur 17(1):41–47Google Scholar
  28. Buchmabauer G, Jirovetz L, Nikovorov A (1997) The use of GC-FID, FTIR-MS and olfactory of essential oil and plant extracts. Springer, BerlinGoogle Scholar
  29. Cai JY, Henion J (1995) Capillary electrophoresis mass-spectrometry. J Chromatogr A 703(1–2):667–692Google Scholar
  30. Calderon AI, Wright BJ, Hurst WJ, van Breemen RB (2009) Screening antioxidants using LC-MS: case study with cocoa. J Agr Food Chem 57(13):5693–5699Google Scholar
  31. Calvey EM, Begley TH, Roach JAG (1995) SFC-FTIR spectroscopy and SFC-MS of nonvolatile extractants of microwave susceptor packaging. J Chromatogr Sci 33(2):61–65Google Scholar
  32. Calvey EM, Roach JA, Block E (1994) Supercritical fluid chromatography of garlic (Allium sativum) extracts with mass spectrometric identification of allicin. J Chromatogr Sci 32(3):93–96PubMedGoogle Scholar
  33. CAMAG Research & Development. The new TLC-MS interface. vol CBS 102 Google Scholar
  34. Cao J, Murch SJ, O’Brien R, Saxena PK (2006) Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography-tandem mass spectrometry. J Chromatogr A 1134(1–2):333–337PubMedGoogle Scholar
  35. Cao PY, Liu FM, Wang SL, Wang YH, Han LJ (2008) GC-ECD analysis of S-metolachlor (Dual Gold) in cotton plant and soil in trial field. Environ Monit Assess 143(1–3):1–7PubMedGoogle Scholar
  36. Cao XL, Tian Y, Zhang TY, Liu QH, Jia LJ, Ito Y (2003) Separation of dammarane-saponins from notoginseng, root of Panax notoginseng (Burk.) F.H. Chen, by HSCCC coupled with evaporative light scattering detector. J Liq Chromatogr R T 26(9–10):1579–1591Google Scholar
  37. Cesla P, Hajek T, Jandera P (2009) Optimization of two-dimensional gradient liquid chromatography separations. J Chromatogr A 1216(16):3443–3457PubMedGoogle Scholar
  38. Chaimbault P, Petritis K, Elfakir C, Dreux M (1999) Determination of 20 underivatized proteinic amino acids by ion-pairing chromatography and pneumatically assisted electrospray mass spectrometry. J Chromatogr A 855(1):191–202 Google Scholar
  39. Chaimbault P, Petritis K, Elfakir C, Dreux M (2000) Ion-pair chromatography on a porous graphitic carbon stationary phase for the analysis of twenty underivatized protein amino acids. J Chromatogr A 870(1–2):245–254PubMedGoogle Scholar
  40. Chan CH, Yusoff R, Ngoh GC, Kung FWL (2011) Microwave-assisted extractions of active ingredients from plants. J Chromatogr A 1218(37):6213–6225PubMedGoogle Scholar
  41. Chang YW, Yao HT, Hsieh SH, Lu TJ, Yeh TK (2007) Quantitative determination of salidroside in rat plasma by on-line solid-phase extraction integrated with high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B 857(1):164–169Google Scholar
  42. Chase GW, Akoh CC, Eitenmiller RR (1994) Analysis Ol tocopherols in vegetable-oils by high-performance liquid-chromatography—comparison of fluorescence and evaporative light-scattering detection. J Am Oil Chem Soc 71(8):877–880Google Scholar
  43. Chen ZL, Jin XY, Wang QP, Lin YM, Gan L (2009) Confirmation and determination of sugars in soft drink products by IEC with ESI-MS. Chromatographia 69(7–8):761–764Google Scholar
  44. Chen ZL, Kim KR, Owens G, Naidu R (2008) Determination of carboxylic acids from plant root exudates by ion exclusion chromatography with ESI-MS. Chromatographia 67(1–2):113–117Google Scholar
  45. Cho MJ, Howard LR, Prior RL, Clark JR (2004) Flavonoid glycosides and antioxidant capacity of varous blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agr 84(13):1771–1782Google Scholar
  46. Cicchetti E, Chaintreau A (2009) Comparison of extraction techniques and modeling of accelerated solvent extraction for the authentication of natural vanilla flavors. J Sep Sci 32(11):1957–1964PubMedGoogle Scholar
  47. Cifuentes A (2006) Recent advances in the application of capillary electromigration methods for food analysis. Electrophoresis 27(1):283–303PubMedGoogle Scholar
  48. Claude B, Morin P, Lafosse M, Belmont AS, Haupt K (2008) Selective solid-phase extraction of a triterpene acid from a plant extract by molecularly imprinted polymer. Talanta 75(2):344–350PubMedGoogle Scholar
  49. Co M, Fagerlund A, Engman L, Sunnerheim K, Sjoberg PJR, Turner C (2012) Extraction of antioxidants from spruce (Picea abies) bark using eco-friendly solvents. Phytochem Anal 23(1):1–11PubMedGoogle Scholar
  50. Cole RB (1997) Electrospray ionization mass spectrometry. Wiley, New YorkGoogle Scholar
  51. Coleman WM, Dube MF (2005) Headspace solid-phase microextraction analysis of artificial flavors. J Sci Food Agr 85(15):2645–2654Google Scholar
  52. Colombo R, Lancas FM, Yariwake JH (2006) Determination of flavonoids in cultivated sugarcane leaves, bagasse, juice and in transgenic sugarcane by liquid chromatography-UV detection. J Chromatogr A 1103(1):118–124PubMedGoogle Scholar
  53. Corporation L (2004) Comprehensive two-dimensional gas chromatography (GC × GC)—time-of-flight mass spectrometry of metabolic samples obtained from the leaves of a hybrid Aspen (Populus Tremula) Plant, vol 203–821–233. Saint Joseph, MichiganGoogle Scholar
  54. Corradini C, Cavazza A, Bignardi C (2012) High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. Int J Carbohydr Chem 2012:13Google Scholar
  55. Cortes-Aguado S, Sanchez-Morito N, Arrebola FJ, Frenich AG, Vidal JLM (2008) Fast screening of pesticide residues in fruit juice by solid-phase microextraction and gas chromatography-mass spectrometry. Food Chem 107(3):1314–1325Google Scholar
  56. Crecelius A, Clench MR, Richards DS (2003) TLC-MALDI in pharmaceutical analysis. Lc Gc Eur 16(4):225–229Google Scholar
  57. Crego A, Ibanez E, Garcia E, de Pablos RR, Senorans FJ, Reglero G, Cifuentes A (2004) Capillary electrophoresis separation of rosemary antioxidants from subcritical water extracts. Eur Food Res Technol 219(5):549–555Google Scholar
  58. Cvek J, Medic-Saric M, Jasprica I, Mornar A (2007) High-performance thin-layer chromatographic analysis of the phenolic acid and flavonoid content of Croatian propolis samples. JPC-J Planar Chromat 20(6):429–435Google Scholar
  59. de Geus HJ, Aidos I, de Boer J, Luten JB, Brinkman UAT (2001) Characterisation of fatty acids in biological oil samples using comprehensive multidimensional gas chromatography. J Chromatogr A 910(1):95–103PubMedGoogle Scholar
  60. De Hoffman E, Charrette J, Stroobant V (1994) Spectrométrie de masse. Masson, ParisGoogle Scholar
  61. De Medici D, Pieretti S, Salvatore G, Nicoletti M, Rasoanaivo P (2006) Chemical analysis of essential oils of Malagasy medicinal plants by gas chromatography and NMR spectroscopy. Flavour Frag J 7(5):275–281Google Scholar
  62. de Person M, Chaimbault P, Elfakir C (2008) Analysis of native amino acids by liquid chromatography/electrospray ionization mass spectrometry: comparative study between two sources and interfaces. J Mass Spectrom JMS 43(2):204–215Google Scholar
  63. de Villiers A, Kalili KM, Malan M, Roodman J (2010) Improving HPLC separation of polyphenols. Lc Gc Eur 23(9):466Google Scholar
  64. del Rio JC, Gutierrez A, Rodriguez IM, Ibarra D, Martinez AT (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FTIR. J Anal Appl Pyrol 79(1–2):39–46Google Scholar
  65. Denery JR, Dragull K, Tang CS, Li QX (2004) Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal Chim Acta 501(2):175–181Google Scholar
  66. Dhara R, Bhattacharyya DK, Ghosh M (2010) Analysis of sterol and other components present in unsaponifiable matters of mahua, sal and mango kernel oil. J Oleo Sci 59(4):169–176PubMedGoogle Scholar
  67. Donato P, Cacciola F, Dugo P, Mondello L (2011) The secrets of red wine—determination of polyphenols by comprehensive 2D LC with PDA and MS-MS (IT-TOF) detection. LC GC Eur Application Book 3:8–9 Google Scholar
  68. Dorich B, Francis E, Murphy B, Richter B, Henderson S (2008) Accelerated solvent extraction with acid pretreatment for improved laboratory productivity. Am Lab 40(8):18Google Scholar
  69. Dost K, Davidson G (2000) Development of a packed-column supercritical fluid chromatography/atmospheric pressure chemical-ionisation mass spectrometric technique for the analysis of atropine. J Biochem Bioph Meth 43(1–3):125–134Google Scholar
  70. Dreux M, Lafosse M (1997) Review of evaporative light-scattering detection for packed-column SFC. LCGC Int 10(6):382–386Google Scholar
  71. Dreux M, Lafosse M, Morin-Allory L (1996) The evaporative light scattering detector—A universal instrument for non-volatile solutes in LC and SFC. LCGC Int 9(3):148–153Google Scholar
  72. Du M, Ahn DU (2002) Simultaneous analysis of tocopherols, cholesterol, and phytosterols using gas chromatography. J Food Sci 67(5):1696–1700Google Scholar
  73. Dugo P, Cacciola F, Herrero M, Donato P, Mondello L (2008) Use of partially porous column as second dimension in comprehensive two-dimensional system for analysis of polyphenolic antioxidants. J Sep Sci 31(19):3297–3308PubMedGoogle Scholar
  74. Eggers R (1996) Supercritical fluid extraction of oilseeds/lipids in natural products. In: King JW, List GR (eds) Supercritical fluid technology in oil and lipid chemistry. AOCS Press, Champaign, pp 35–65Google Scholar
  75. El Deeb S, Abu Iriban M, Gust R (2011) MEKC as a powerful growing analytical technique. Electrophoresis 32(1):166–183PubMedGoogle Scholar
  76. Eskilsson CS, Hartonen K, Mathiasson L, Riekkola ML (2004) Pressurized hot water extraction of insecticides from process dust—Comparison with supercritical fluid extraction. J Sep Sci 27(1–2):59–64PubMedGoogle Scholar
  77. Farina A, Doldo A, Cotichini V, Rajevic M, Quaglia MG, Mulinacci N, Vincieri FF (1995) HPTLC and reflectance mode densitometry of anthocyanins in Malva silvestris L: a comparison with gradient-elution reversed-phase HPLC. J Pharm Biomed 14(1–2):203–211Google Scholar
  78. Fellows P (2000) Food processing technology: principles and practice, 3edn. Woodhead Publishing, WitneyGoogle Scholar
  79. Flamini R (2003) Mass spectrometry in grape and wine chemistry. Part I: polyphenols. Mass Spectrom Rev 22(4):218–250PubMedGoogle Scholar
  80. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar
  81. Fritsche J, Angoelal R, Dachtler M (2002) On-line liquid-chromatography-nuclear magnetic resonance spectroscopy-mass spectrometry coupling for the separation and characterization of secoisolariciresinol diglucoside isomers in flaxseed. J Chromatogr A 972(2):195–203PubMedGoogle Scholar
  82. Fuleki T, Francis FJ (1968) Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci 33(1):72–78Google Scholar
  83. Ganzler K, Salgo A, Valko K (1986) Microwave extraction—a novel sample preparation method for chromatography. J Chromatogr 371:299–306PubMedGoogle Scholar
  84. Gao M, Song BZ, Liu CZ (2006) Dynamic microwave-assisted extraction of flavonoids from Saussurea medusa Maxim cultured cells. Biochem Eng J 32(2):79–83Google Scholar
  85. Garcia-Marino M, Rivas-Gonzalo JC, Ibanez E, Garcia-Moreno C (2006) Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Anal Chim Acta 563(1–2):44–50Google Scholar
  86. Garcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernandez-Gutierrez A (2010) Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15(12):8813–8826PubMedGoogle Scholar
  87. Gentili A, Caretti F, Bellante S, Rocca LM, Curini R, Venditti A (2012) Development and validation of two multiresidue liquid chromatography tandem mass spectrometry methods based on a versatile extraction procedure for isolating non-steroidal anti-inflammatory drugs from bovine milk and muscle tissue. Anal Bioanal Chem 404(5):1375–1388PubMedGoogle Scholar
  88. Gentili A, Caretti F, D’Ascenzo G, Marchese S, Perret D, Di Corcia D, Rocca LM (2008) Simultaneous determination of water-soluble vitamins in selected food matrices by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Sp 22(13):2029–2043Google Scholar
  89. Gogus F, Ozel MZ, Kocak D, Hamilton JF, Lewis AC (2011) Analysis of roasted and unroasted Pistacia terebinthus volatiles using direct thermal desorption-GC × GC-TOF/MS. Food Chem 129(3):1258–1264PubMedGoogle Scholar
  90. Gogus F, Ozel MZ, Lewis AC (2005) Superheated water extraction of essential oils of Origanum micranthum. J Chromatogr Sci 43(2):87–91PubMedGoogle Scholar
  91. Gomez-Romero M, Arraez-Roman D, Moreno-Torres R, Garcia-Salas P, Segura-Carretero A, Fernandez-Gutierrez A (2007) Antioxidant compounds of propolis determined by capillary electrophoresis-mass spectrometry. J Sep Sci 30(4):595–603PubMedGoogle Scholar
  92. Goncalves MS, Vieira IJC, Oliveira RR, Braz R (2011) Application of preparative high-speed counter-current chromatography for the separation of two alkaloids from the roots of Tabernaemontana catharinensis (Apocynaceae). Molecules 16(9):7480–7487PubMedGoogle Scholar
  93. Gorecki T, Yu XM, Pawliszyn J (1999) Theory of analyte extraction by selected porous polymer SPME fibers. Analyst 124(5):643–649Google Scholar
  94. Gritti F, Guiochon G (2012) The current revolution in column technology: how it began, where is it going? J Chromatogr A 1228:2–19PubMedGoogle Scholar
  95. Groskreutz SR, Swenson MM, Secor LB, Stoll DR (2012) Selective comprehensive multi-dimensional separation for resolution enhancement in high performance liquid chromatography. Part I: Principles and instrumentation. J Chromatogr A 1228:31–40PubMedGoogle Scholar
  96. Grunwald C (1970) Quantitative analysis of free phytosterols by gas chromatography using stationary phase Ov-101. Anal Biochem 34(1):16PubMedGoogle Scholar
  97. Gruz J, Novak O, Strnad M (2008) Rapid analysis of phenolic acids in beverages by UPLC-MS/MS. Food Chem 111(3):789–794Google Scholar
  98. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168(1–2):101–168PubMedGoogle Scholar
  99. Gutzeit D, Winterhalter P, Jerz G (2007) Application of preparative high-speed counter-current chromatography/electrospray ionization mass spectrometry for a fast screening and fractionation of polyphenols. J Chromatogr A 1172(1):40–46PubMedGoogle Scholar
  100. Ha IJ, Kang M, Na YC, Park Y, Kim YS (2011) Preparative separation of minor saponins from Platycodi Radix by high-speed counter-current chromatography. J Sep Sci 34(19):2559–2565PubMedGoogle Scholar
  101. Hakala KS, Laitinen L, Kaukonen AM, Hirvonen J, Kostiainen R, Kotiaho T (2003) Development of LC/MS/MS methods for cocktail dosed Caco-2 samples using atmospheric pressure photoionization and electrospray ionization. Anal Chem 75(21):5969–5977PubMedGoogle Scholar
  102. Hao ZG, Parker B, Knapp M, Yu LL (2005) Simultaneous quantification of alpha-tocopherol and four major carotenoids in botanical materials by normal phase liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J Chromatogr A 1094(1–2):83–90PubMedGoogle Scholar
  103. Hasanloo T, Bahmanei M, Sepehrifar R, Kalantari F (2008) Determination of tocopherols and fatty acids in seeds of Silybum marianum (L.) gaerth. J Med Plants 7(4):69–76Google Scholar
  104. Hazotte A, Libong D, Matoga A, Chaminade P (2007) Comparison of universal detectors for high-temperature micro liquid chromatography. J Chromatogr A 1170(1–2):52–61PubMedGoogle Scholar
  105. Heldman DR, Hartel RW (1997) Principles of food processing. Springer, New YorkGoogle Scholar
  106. Herbreteau B, Lafosse M, Morinallory L, Dreux M (1992) High-performance liquid-chromatography of raw sugars and Polyols using bonded silica-gels. Chromatographia 33(7–8):325–330Google Scholar
  107. Herbreteau B, Salvador A, Lafosse M, Dreux M (1999) SFC with evaporative light-scattering SFC detection and atmospheric-pressure chemical-ionisation mass spectrometry for methylated glucoses and cyclodextrins analysis. Analusis 27(8):706–712Google Scholar
  108. Herrero M, Cifuentes A, Ibanez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae—A review. Food Chem 98(1):136–148Google Scholar
  109. Hilhorst MJ, Somsen GW, de Jong GJ (1998) Potential of capillary electrophoresis for the profiling of propolis. HRC-J High Res Chrom 21(11):608–612Google Scholar
  110. Himbert F, Dreux M, Pennanec R, Chaimbault P, Elfakir C, Lafosse M (2003) Le split en mode actif: Une approche innovante du couplage de la chromatographie liquide en phase normale à la spectrométrie de masse. Spectra Anal 32(235):29–31Google Scholar
  111. Hinshaw JV (2003) Solid-phase microextraction. Lc Gc N Am 21(11):1056–1061Google Scholar
  112. Hirahara Y, Kimura M, Inoue T, Uchikawa S, Otani S, Haganuma A, Matsumoto N, Hirata A, Maruyama S, Iizuka T, Ukyo M, Ota M, Hirose H, Suzuki S, Uchida Y (2005) Validation of multiresidue screening methods for the determination of 186 pesticides in 11 agricultural products using gas chromatography (GC). J Health Sci 51(5):617–627Google Scholar
  113. Hommerson P, Khan AM, de Jong GJ, Somsen GW (2009) Capillary electrophoresis-atmospheric pressure chemical ionization-mass spectrometry using an orthogonal interface: set-up and system parameters. J Am Soc Mass Spectr 20(7):1311–1318Google Scholar
  114. Hompesch RW, Garcia CD, Weiss DJ, Vivanco JM, Henry CS (2005) Analysis of natural flavonoids by microchip-micellar electrokinetic chromatography with pulsed amperometric detection. Analyst 130(5):694–700PubMedGoogle Scholar
  115. Hossain MB, Barry-Ryan C, Martin-Diana AB, Brunton NP (2011) Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem 126(1):339–346Google Scholar
  116. Hromadkova Z, Ebringerova A (2003) Ultrasonic extraction of plant materials-investigation of hemicellulose release from buckwheat hulls. Ultrason Sonochem 10(3):127–133PubMedGoogle Scholar
  117. Hurtado-Fernandez E, Gomez-Romero M, Carrasco-Pancorbo A, Fernandez-Gutierrez A (2010) Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material. J Pharm Biomed 53(5):1130–1160Google Scholar
  118. Illes V, Daood HG, Biacs PA, Gnayfeed MH, Meszaros B (1999) Supercritical CO2 and subcritical propane extraction of spice red pepper oil with special regard to carotenoid and tocopherol content. J Chromatogr Sci 37(9):345–352Google Scholar
  119. Inagaki S, Min JZ, Toyo’oka T (2007) Direct detection method of oligosaccharides by high-performance liquid chromatography with charged aerosol detection. Biomed Chromatogr 21(4):338–342PubMedGoogle Scholar
  120. Ismail SMM, Ali HM, Habiba RA (1993) Gc-Ecd and Gc-Ms analyses of profenofos residues and its biochemical effects in tomatoes and tomato products. J Agr Food Chem 41(4):610–615Google Scholar
  121. Ito Y, Sandlin J, Bowers WG (1982) High-speed preparative countercurrent chromatography with a coil planet centrifuge. J Chromatogr 244(2):247–258Google Scholar
  122. Janicsak G, Toth E, Mathe I (2007) TLC-densitometric investigations of phenylpropanoid glycosides in black horehound (Ballota nigra L.). JPC J Planar Chromat 20(6):443–446Google Scholar
  123. Jelen HH, Majcher M, Dziadas M (2012) Microextraction techniques in the analysis of food flavor compounds: a review. Anal Chim Acta 738:13–26PubMedGoogle Scholar
  124. Jenkins AJ, Llosa T, Montoya I, Cone EJ (1996) Identification and quantitation of alkaloids in coca tea. Forensic Sci Int 77(3):179–189PubMedCentralPubMedGoogle Scholar
  125. Jerkovic V, Nguyen F, Timmermans A, Collin S (2008) Comparison of procedures for resveratrol analysis in beer: Assessment of stilbenoids stability through wort fermentation and beer aging. J I Brewing 114(2):143–149Google Scholar
  126. Jessome LL, Volmer DA (2006) Ion suppression: a major concern in mass spectrometry. LCGC N Am 24(5):83–89Google Scholar
  127. Jiang CW, Ren QL, Wu PD (2003) Study on retention factor and resolution of tocopherols by supercritical fluid chromatography. J Chromatogr A 1005(1–2):155–164PubMedGoogle Scholar
  128. Jiang LQ, Fang GZ, Zhang Y, Cao GJ, Wang S (2008) Analysis of flavonoids in propolis and Ginkgo biloba by Micellar electrokinetic capillary chromatography. J Agr Food Chem 56(24):11571–11577Google Scholar
  129. Jiao JJ, Zhang Y, Liu CM, Liu J, Wu XQ, Zhang Y (2007) Separation and purification of tricin from an antioxidant product derived from bamboo leaves. J Agr Food Chem 55(25):10086–10092Google Scholar
  130. Jokic S, Velic D, Bilic M, Bucic-Kojic A, Planinic M, Tomas S (2010) Modelling of the process of soli–-liquid extraction of total polyphenols from soybeans. Czech J Food Sci 28(3):206–212Google Scholar
  131. Jover E, Adahchour M, Bayona JM, Vreuls RJJ, Brinkman UAT (2005) Characterization of lipids in complex samples using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J Chromatogr A 1086(1–2):2–11PubMedGoogle Scholar
  132. Justesen U (2000) Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J Chromatogr A 902(2):369–379PubMedGoogle Scholar
  133. Kalili KM, de Villiers A (2009) Off-line comprehensive 2-dimensional hydrophilic interaction × reversed phase liquid chromatography analysis of procyanidins. J Chromatogr A 1216(35):6274–6284PubMedGoogle Scholar
  134. Karatapanis AE, Fiamegos YC, Stalikas CD (2009) HILIC separation and quantitation of water-soluble vitamins using diol column. J Sep Sci 32(7):909–917PubMedGoogle Scholar
  135. Karuna R, Sashidhar RB (1999) Use of ion-exchange chromatography coupled with TLC-laser scanning densitometry for the quantitation of fumonisin B(1). Talanta 50(2):381–389PubMedGoogle Scholar
  136. Kataoka H, Lord HL, Pawliszyn J (2000) Applications of solid-phase microextraction in food analysis. J Chromatogr A 880(1–2):35–62PubMedGoogle Scholar
  137. Kim TH, Lee SM, Kim YS, Kim KH, Oh S, Lee HJ (2003) Aroma dilution method using GC injector split ratio for volatile compounds extracted by headspace solid phase microextraction. Food Chem 83(1):151–158Google Scholar
  138. Kolouchova-Hanzlikova I, Melzoch K, Filip V, Smidrkal J (2004) Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wines. Food Chem 87(1):151–158Google Scholar
  139. Konig WA, Hochmuth DH (2004) Enantioselective gas chromatography in flavor and fragrance analysis: strategies for the identification of known and unknown plant volatiles. J Chromatogr Sci 42(8):423–439PubMedGoogle Scholar
  140. Korytar P, Janssen HG, Matisova E, Brinkman UAT (2002) Practical fast gas chromatography: methods, instrumentation and applications. Trac Trend Anal Chem 21(9–10):558–572Google Scholar
  141. Kostiainen R, Kauppila TJ (2009) Effect of eluent on the ionization process in liquid chromatography-mass spectrometry. J Chromatogr A 1216(4):685–699PubMedGoogle Scholar
  142. Kovacevic M, Kac M (2001) Solid-phase microextraction of hop volatiles—potential use for determination and verification of hop varieties. J Chromatogr A 918(1):159–167PubMedGoogle Scholar
  143. Kristo ST, Ganzler K, Apati P, Szoke E, Kery A (2002) Analysis of antioxidant flavonoids from Asteraceae and Moraceae plants by capillary electrophoresis. Chromatographia 56:S121–S126Google Scholar
  144. Kumar V, Mukherjee K, Kumar S, Mal M, Mukherjee PK (2008) Validation of HPTLC method for the analysis of taraxerol in Clitoria ternatea. Phytochem Anal 19(3):244–250PubMedGoogle Scholar
  145. Lamuelaraventos RM, Romeroperez AI, Waterhouse AL, Delatorreboronat MC (1995) Direct HPLC analysis of cis-resveratrol and trans-resveratrol and piceid isomers in Spanish red vitis-vinifera wines. J Agr Food Chem 43(2):281–283Google Scholar
  146. Lang QY, Wai CM (2001) Supercritical fluid extraction in herbal and natural product studies—a practical review. Talanta 53(4):771–782PubMedGoogle Scholar
  147. Larroque V, Desauziers V, Mocho P (2006) Development of a solid phase microextraction (SPME) method for the sampling of VOC traces in indoor air. J Environ Monit 8(1):106–111PubMedGoogle Scholar
  148. Lee I, Boyce MC, Breadmore MC (2010) Quantitative determination of glucoraphanin in Brassica vegetables by micellar electrokinetic capillary chromatography. Anal Chim Acta 663(1):105–108PubMedGoogle Scholar
  149. Leijdekkers AGM, Sanders MG, Schols HA, Gruppen H (2011) Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection. J Chromatogr A 1218(51):9227–9235PubMedGoogle Scholar
  150. Lerma-Garcia MJ, Simo-Alfonso EF, Mendez A, Lliberia JL, Herrero-Martinez JM (2010) Fast separation and determination of sterols in vegetable oils by ultraperformance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection. J Agr Food Chem 58(5):2771–2776Google Scholar
  151. Lesellier E (2012) Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases. J Chromatogr A 1228:89–98PubMedGoogle Scholar
  152. Lesellier E, Marty C, Berset C, Tchapla A (1989) Optimization of the isocratic non-aqueous reverse phase (NARP) HPLC separation of trans cis alpha-carotenes and beta-carotenes. HRC J High Res Chrom 12(7):447–454Google Scholar
  153. Lesellier E, Tchapla A, Pechard MR, Lee CR, Krstulovic AM (1991) Separation of trans/cis alpha-carotene and beta-carotene by supercritical fluid chromatography. 2. effect of the type of octadecyl-bonded stationary phase on retention and selectivity of carotenes. J Chromatogr 557(1–2):59–67Google Scholar
  154. Li H, Bo C, Zhang Z, Yao S (2004) Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies). Talanta 63(3):659–665PubMedGoogle Scholar
  155. Liang JL, Yang Z, Cao XJ, Wu B, Wu SH (2011) Preparative isolation of novel antioxidant flavonoids of alfalfa by stop-and-go counter-current chromatography and following on-line liquid chromatography desalination. J Chromatogr A 1218(36):6191–6199PubMedGoogle Scholar
  156. Lisa M, Lynen F, Holcapek M, Sandra P (2007) Quantitation of triacylglycerols from plant oils using charged aerosol detection with gradient compensation. J Chromatogr A 1176(1–2):135–142PubMedGoogle Scholar
  157. Liu C, Han JY, Duan YQ, Huang X, Wang H (2007a) Purification and quantification of ginsenoside Rb-3 and Rc from crude extracts of caudexes and leaves of Panax notoginseng. Sep Purif Technol 54(2):198–203Google Scholar
  158. Liu HT, Li YF, Luan TG, Lan CY, Shu WS (2007b) Simultaneous determination of phytohormones in plant extracts using SPME and HPLC. Chromatographia 66(7–8):515–520Google Scholar
  159. Longo C, Leo L, Leone A (2012) Carotenoids, fatty acid composition and heat stability of supercritical carbon dioxide-extracted-oleoresins. Int J Mol Sci 13(4):4233–4254PubMedCentralPubMedGoogle Scholar
  160. Lopez M, Arce L, Garrido J, Rios A, Valcarcel M (2004) Selective extraction of astaxanthin from crustaceans by use of supercritical carbon dioxide. Talanta 64(3):726–731PubMedGoogle Scholar
  161. Lou ZX, Wang HX, Li J, Zhu S, Lu WP, Ma CY (2011) Effect of simultaneous ultrasonic/microwave assisted extraction on the antioxidant and antibacterial activities of burdock leaves. J Med Plants Res 5(22):5370–5377Google Scholar
  162. Lu YB, Sun CR, Wang Y, Pan YJ (2007) Two-dimensional counter-current chromatography for the preparative separation of prenylflavonoids from Artocarpus altilis. J Chromatogr A 1151(1–2):31–36PubMedGoogle Scholar
  163. Lubda D, Cabrera K, Kraas W, Schaefer C, Cunningham D, Majors RE (2001) New developments in the application of monolithic HPLC columns. LC-GC Europe 14(12):730–732Google Scholar
  164. Lucchesi ME, Chemat F, Smadja J (2004a) An original solvent free microwave extraction of essential oils from spices. Flavour Frag J 19(2):134–138Google Scholar
  165. Lucchesi ME, Chemat F, Smadja J (2004b) Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J Chromatogr A 1043(2):323–327PubMedGoogle Scholar
  166. Luo QL, Andrade JD, Caldwell KD (1998) Thin-layer ion-exchange chromatography of proteins. J Chromatogr A 816(1):97–105PubMedGoogle Scholar
  167. Luque-Garcia JL, Luque de Castro MD (2003) Ultrasound: a powerful tool for leaching. Trac Trend Anal Chem 22(1):41–47Google Scholar
  168. Makino M, Motegi T, Fujimoto Y (2004) Tirucallane-type triterpenes from Juliania adstringens. Phytochemistry 65(7):891–896PubMedGoogle Scholar
  169. Malovana S, Montelongo FJG, Perez JP, Rodriguez-Delgado MA (2001) Optimisation of sample preparation for the determination of trans-resveratrol and other polyphenolic compounds in wines by high performance liquid chromatography. Anal Chim Acta 428(2):245–253Google Scholar
  170. Mandal V, Mohan Y, Hemalatha S (2007) Microwave assisted extraction—An innovative and promising extraction tool for medicinal plant research. Pharmacognosy Rev 1(1):7–18Google Scholar
  171. Manninen P, Laakso P (1997) Capillary supercritical fluid chromatography atmospheric pressure chemical ionization mass spectrometry of triacylglycerols in berry oils. J Am Oil Chem Soc 74(9):1089–1098Google Scholar
  172. Manzano P, Arnaiz E, Diego JC, Toribio L, Garcia-Viguera C, Bernal JL, Bernal J (2011) Comprehensive two-dimensional gas chromatography with capillary flow modulation to separate FAME isomers. J Chromatogr A 1218(30):4952–4959PubMedGoogle Scholar
  173. Maoela MS, Arotiba OA, Baker PGL, Mabusela WT, Jahed N, Songa EA, Iwuoha EI (2009) Electroanalytical determination of catechin flavonoid in ethyl acetate extracts of medicinal plants. Int J Electrochem Sci 4:1497–1510Google Scholar
  174. Marcato B, Cecchin G (1996) Analysis of mixtures containing free fatty acids and mono-, di- and triglycerides by high-performance liquid chromatography coupled with evaporative light-scattering detection. J Chromatogr A 730(1–2):83–90Google Scholar
  175. Marchi I, Rudaz S, Veuthey JL (2009) Atmospheric pressure photoionization for coupling liquid-chromatography to mass spectrometry: a review. Talanta 78(1):1–18PubMedGoogle Scholar
  176. Marioli JM, Sereno LE (1996) Electrochemical Detection of Underivatized Amino Acids with a Ni–Cr alloy electrode. J Liq Chromatogr Relat Technol 19:2505–2515Google Scholar
  177. Marriott PJ, Kinghorn RM (1997) Longitudinally modulated cryogenic system. A generally applicable approach to solute trapping and mobilization in gas chromatography. Anal Chem 69(13):2582–2588PubMedGoogle Scholar
  178. Marston A, Hostettmann K (2006) Developments in the application of counter-current chromatography to plant analysis. J Chromatogr A 1112(1–2):181–194PubMedGoogle Scholar
  179. Martin AJ, Synge RL (1941) A new form of chromatogram employing two liquid phases: a theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J 35(12):1358–1368PubMedCentralPubMedGoogle Scholar
  180. Matsubara A, Uchikata T, Shinohara M, Nishiumi S, Yoshida M, Fukusaki E, Bamba T (2012) Highly sensitive and rapid profiling method for carotenoids and their epoxidized products using supercritical fluid chromatography coupled with electrospray ionization-triple quadrupole mass spectrometry. J Biosci Bioeng 113(6):782–787PubMedGoogle Scholar
  181. Megoulas NC, Koupparis MA (2005) Twenty years of evaporative light scattering detection. Crit Rev Anal Chem 35(4):301–316Google Scholar
  182. Michel T, Destandau E, Elfakir C (2011a) Evaluation of a simple and promising method for extraction of antioxidants from sea buckthorn (Hippophae rhamnoides L.) berries: pressurised solvent-free microwave assisted extraction. Food Chem 126(3):1380–1386Google Scholar
  183. Michel T, Destandau E, Elfakir C (2011b) On-line hyphenation of centrifugal partition chromatography and high pressure liquid chromatography for the fractionation of flavonoids from Hippophae rhamnoides L. berries. J Chromatogr A 1218(36):6173–6178PubMedGoogle Scholar
  184. Moini M (2007) Simplifying CE-MS operation. 2. Interfacing low-flow separation techniques to mass spectrometry using a porous tip. Anal Chem 79(11):4241–4246PubMedGoogle Scholar
  185. Mol R, de Jong GJ, Somsen GW (2005) On-line capillary electrophoresis-mass spectrometry using dopant-assisted atmospheric pressure photoionization: setup and system performance. Electrophoresis 26(1):146–154PubMedGoogle Scholar
  186. Mondello L, Casilli A, Tranchida PQ, Costa R, Dugo P, Dugo G (2004) Fast GC for the analysis of citrus oils. J Chromatogr Sci 42(8):410–416PubMedGoogle Scholar
  187. Mondello L, Tranchida PQ, Costa R, Casilli A, Dugo P, Cotroneo A, Dugo G (2003) Fast GC for the analysis of fats and oils. J Sep Sci 26(17):1467–1473Google Scholar
  188. Moreau RA (2006) The analysis of lipids via HPLC with a charged aerosol detector. Lipids 41(7):727–734PubMedGoogle Scholar
  189. Moreau RA, Scott KM, Haas MJ (2008) The identification and quantification of steryl glucosides in precipitates from commercial biodiesel. J Am Oil Chem Soc 85(8):761–770Google Scholar
  190. Moricz AM, Ott PG, Boszormenyi A, Lemberkovics E, Mincsovics E, Tyihak E (2012a) Bioassay-guided isolation and identification of antimicrobial compounds from thyme essential oil by means of overpressured layer chromatography, bioautography and GC-MS. Chromatographia 75(17–18):991–999Google Scholar
  191. Moricz AM, Szarka S, Ott PG, Hethelyi EB, Szoke E, Tyihak E (2012b) Separation and identification of antibacterial chamomile components using OPLC, bioautography and GC-MS. Med Chem 8(1):85–94PubMedGoogle Scholar
  192. Morlock GE, Jautz U (2008) Comparison of two different plunger geometries for HPTLC-MS coupling via an extractor-based interface. JPC-J Planar Chromat 21(5):367–371Google Scholar
  193. Mulbry W, Kondrad S, Buyer J, Luthria DL (2009) Optimization of an oil extraction process for algae from the treatment of manure effluent. J Am Oil Chem Soc 86(9):909–915Google Scholar
  194. Munoz-Gonzalez C, Moreno-Arribas MV, Rodriguez-Bencomo JJ, Cueva C, Alvarez PJM, Bartolome B, Pozo-Bayon MA (2012) Feasibility and application of liquid-liquid extraction combined with gas chromatography-mass spectrometry for the analysis of phenolic acids from grape polyphenols degraded by human faecal microbiota. Food Chem 133(2):526–535Google Scholar
  195. Murayama W, Kobayashi T, Kosuge Y, Yano H, Nunogaki Y, Nunogaki K (1982) A new centrifugal countercurrent chromatograph and its application. J Chromatogr 239:643–649Google Scholar
  196. Ng LK (2002) Analysis by gas chromatography/mass spectrometry of fatty acids and esters in alcoholic beverages and tobaccos. Anal Chim Acta 465(1–2):309–318Google Scholar
  197. Nichols JA, Foster MD (2009) Mass rate attenuator. USA Patent n° 7,575,723 B2 Google Scholar
  198. Nkhili E, Tomao V, El Hajji H, El Boustani ES, Chemat F, Dangles O (2009) Microwave-assisted water extraction of green tea polyphenols. Phytochem Anal 20(5):408–415PubMedGoogle Scholar
  199. Nogueira LC, Silva F, Ferreira IMPLVO, Trugo LC (2005) Separation and quantification of beer carbohydrates by high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 1065(2):207–210PubMedGoogle Scholar
  200. Novakova L, Matysova L, Solichova D, Koupparis MA, Solich P (2004) Comparison of performance of C18 monolithic rod columns and conventional C18 particle-packed columns in liquid chromatographic determination of Estrogel and Ketoprofen gel. J Chromatogr B 813(1–2):191–197Google Scholar
  201. Novakova L, Vildova A, Mateus JP, Goncalves T, Solich P (2010) Development and application of UHPLC–MS/MS method for the determination of phenolic compounds in Chamomile flowers and Chamomile tea extracts. Talanta 82(4):1271–1280PubMedGoogle Scholar
  202. Nunes C, Rocha SM, Saraiva J, Coimbra MA (2006) Simple and solvent-free methodology for simultaneous quantification of methanol and acetic acid content of plant polysaccharides based on headspace solid phase microextraction-gas chromatography (HS-SPME-GG-FID). Carbohyd Polym 64(2):306–311Google Scholar
  203. Nunez O, Gallart-Ayala H, Martins CPB, Lucci P (2012) New trends in fast liquid chromatography for food and environmental analysis. J Chromatogr A 1228:298–323PubMedGoogle Scholar
  204. Nyiredy S (2001) The bridge between TLC and HPLC: overpressured layer chromatography (OPLC). Trac-Trend Anal Chem 20(2):91–101Google Scholar
  205. Olszewska MA (2012) New validated high-performance liquid chromatographic method for simultaneous analysis of ten flavonoid aglycones in plant extracts using a C18 fused-core column and acetonitrile-tetrahydrofuran gradient. J Sep Sci 35(17):2174–2183PubMedGoogle Scholar
  206. Otsuka K, Terabe S (1996) Micellar electrokinetic chromatography. Capillary electrophoresis guide book. Methods in molecular biology, vol 52. Humana Press Inc, TotowaGoogle Scholar
  207. Ozel MZ, Gogus F, Lewis AC (2006) Comparison of direct thermal desorption with water distillation and superheated water extraction for the analysis of volatile components of Rosa damascena Mill. using GC × GC-TOF/MS. Anal Chim Acta 566(2):172–177Google Scholar
  208. Ozel MZ, Gogus F, Lewis AC (2008) Composition of Eucalyptus camaldulensis volatiles using direct thermal desorption coupled with comprehensive two-dimensional gas chromatography-time-of-flight-mass spectrometry. J Chromatogr Sci 46(2):157–161PubMedGoogle Scholar
  209. Paolini J, Leandri C, Desjobert JM, Barboni T, Costa J (2008) Comparison of liquid–liquid extraction with headspace methods for the characterization of volatile fractions of commercial hydrolats from typically Mediterranean species. J Chromatogr A 1193(1–2):37–49PubMedGoogle Scholar
  210. Park HS, Lee HJ, Shin MH, Lee KW, Lee H, Kim YS, Kim KO, Kim KH (2007) Effects of cosolvents on the decaffeination of green tea by supercritical carbon dioxide. Food Chem 105(3):1011–1017Google Scholar
  211. Pelusio F, Nilsson T, Montanarella L, Tilio R, Larsen B, Facchetti S, Madsen JO (1995) Headspace solid-phase microextraction analysis of volatile organic sulfur-compounds in black-and-white truffle aroma. J Agr Food Chem 43(8):2138–2143Google Scholar
  212. Peng JY, Fan GR, Hong ZY, Chai YF, Wu YT (2005) Preparative separation of isovitexin and isoorientin from Patrinia villosa Juss by high-speed counter-current chromatography. J Chromatogr A 1074(1–2):111–115PubMedGoogle Scholar
  213. Perez RA, Navarro T, de Lorenzo C (2007) HS-SPME analysis of the volatile compounds from spices as a source of flavour in ‘Campo Real’ table olive preparations. Flavour Frag J 22(4):265–273Google Scholar
  214. Petritis KN, Chaimbault P, Elfakir C, Dreux M (1999) Ion-pair reversed-phase liquid chromatography for determination of polar underivatized amino acids using perfluorinated carboxylic acids as ion pairing agent. J Chromatogr A 833(2):147–155Google Scholar
  215. Phillips JB, Beens J (1999) Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. J Chromatogr A 856(1–2):331–347PubMedGoogle Scholar
  216. Pichard H, Caude M, Morin P, Richard H, Rosset R (1990) Identification of pepper essential oil constituents by various chromatography-spectroscopy couplings. Analusis 18(3):167–178Google Scholar
  217. Polesello S, Lovati F, Rizzolo A, Rovida C (1993) Supercritical-fluid extraction as a preparative tool for strawberry aroma analysis. HRC-J High Res Chrom 16(9):555–559Google Scholar
  218. Pongnaravane B, Goto M, Sasaki M, Anekpankul T, Pavasant P, Pavasant P, Shotipruk A (2006) Extraction of anthraquinones from roots of Morinda citrifolia by pressurized hot water: antioxidant activity of extracts. J Supercrit Fluid 37(3):390–396Google Scholar
  219. Poukensrenwart P, Tits M, Wauters JN, Angenot L (1992) Reversed-phase hptlc densitometric evaluation of fraxin in fraxinus-excelsior leaves. J Pharmaceut Biomed 10(10–12):1089–1091Google Scholar
  220. Pruvost A, Becher F, Bardouille P, Guerrero C, Creminon C, Delfraissy JF, Goujard C, Grassi J, Benech H (2001) Direct determination of phosphorylated intracellular anabolites of stavudine (d4T) by liquid chromatography tandem mass spectrometry. Rapid Commun Mass Sp 15(16):1401–1408Google Scholar
  221. Pukalskas A, van Beek TA, de Waard P (2005) Development of a triple hyphenated HPLC-radical scavenging detection-DAD-SPE-NMR system for the rapid identification of antioxidants in complex plant extracts. J Chromatogr A 1074(1–2):81–88PubMedGoogle Scholar
  222. Ramirez-Coronel MAN, Marnet N, Kolli VSK, Roussos S, Guyot S, Augur C (2004) Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (Coffea arabica) by thiolysis-high-performance liquid chromatography. J Agr Food Chem 52(5):1344–1349Google Scholar
  223. Ramirez P, Senorans FJ, Ibanez E, Reglero G (2004) Separation of rosemary antioxidant compounds by supercritical fluid chromatography on coated packed capillary columns. J Chromatogr A 1057(1–2):241–245PubMedGoogle Scholar
  224. Rather MA, Ganai BA, Kamili AN, Qayoom M, Akbar S, Masood A, Rasool R, Wani SH, Qurishi MA (2012) Comparative GC-FID and GC-MS analysis of the mono and sesquiterpene secondary metabolites produced by the field grown and micropropagated plants of Artemisia amygdalina Decne. Acta Physiol Plant 34(3):885–890Google Scholar
  225. Rauha JP, Vuorela H, Kostiainen R (2001) Effect of eluent on the ionization efficiency of flavonoids by ion spray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization mass spectrometry. J Mass Spectrom 36(12):1269–1280PubMedGoogle Scholar
  226. Remoroza C, Cord-Landwehr S, Leijdekkers AGM, Moerschbacher BM, Schols HA, Gruppen H (2012) Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohyd Polym 90(1):41–48Google Scholar
  227. Rhourri-Frih B, Chaimbault P, Claude B, Lamy C, Andre P, Lafosse M (2009) Analysis of pentacyclic triterpenes by LC-MS. A comparative study between APCI and APPI. J Mass Spectrom 44(1):71–80PubMedGoogle Scholar
  228. Rhourri-Frih B, Chaimbault P, Dequeral D, Andre P, Lafosse M (2012) Investigation of porous graphitic carbon for triterpenoids and natural resinous materials analysis by high performance liquid chromatography hyphenated to mass spectrometry. J Chromatogr A 1240:140–146PubMedGoogle Scholar
  229. Richter BE, Bornhop DJ, Swanson JT, Wangsgaard JG, Andersen MR (1989) Gas-chromatographic detectors in SFC. J Chromatogr Sci 27(6):303–308Google Scholar
  230. Rodriguez-Amaya DB (2001) A guide to carotenoids analysis in foods ILSI press. International Life Sciences Institute. One Thomas Circle, N.W. Washington, DCGoogle Scholar
  231. Rosset R, Caude M, Jardy A (1991) Chromatographie en phase liquide et supercritique. ParisGoogle Scholar
  232. Rostagno MA, Manchon N, D’Arrigo M, Guillamon E, Villares A, Garcia-Lafuente A, Ramos A, Martinez JA (2011) Fast and simultaneous determination of phenolic compounds and caffeine in teas, mate, instant coffee, soft drink and energetic drink by high-performance liquid chromatography using a fused-core column. Anal Chim Acta 685(2):204–211PubMedGoogle Scholar
  233. Rostagno MA, Palma M, Barroso CG (2007) Fast analysis of soy isoflavones by high-performance liquid chromatography with monolithic columns. Anal Chim Acta 582(2):243–249PubMedGoogle Scholar
  234. Ruperez FJ, Martin D, Herrera E, Barbas C (2001) Chromatographic analysis of alpha-tocopherol and related compounds in various matrices. J Chromatogr A 935(1–2):45–69PubMedGoogle Scholar
  235. Sagratini G, Mañes J, Giardiná D, Damiani P, Picó Y (2007) Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography–mass spectrometry. J Chromatogr A 1147(2):135–143PubMedGoogle Scholar
  236. Salvador A, Herbreteau B, Dreux M (1999) Electrospray mass spectrometry and supercritical fluid chromatography of methylated beta-cyclodextrins. J Chromatogr A 855(2):645–656PubMedGoogle Scholar
  237. Sanchez-Avila N, Priego-Capote F, Ruiz-Jimenez J, de Castro MDL (2009) Fast and selective determination of triterpenic compounds in olive leaves by liquid chromatography-tandem mass spectrometry with multiple reaction monitoring after microwave-assisted extraction. Talanta 78(1):40–48PubMedGoogle Scholar
  238. Sannomiya M, Rodrigues CM, Coelho RG, dos Santos LC, Hiruma-Lima CA, Brito ARS, Vilegas W (2004) Application of preparative high-speed counter-current chromatography for the separation of flavonoids from the leaves of Byrsonima crassa Niedenzu (IK). J Chromatogr A 1035(1):47–51PubMedGoogle Scholar
  239. Scampicchio M, Wang J, Mannino S, Chatrathi MP (2004) Microchip capillary electrophoresis with amperometric detection for rapid separation and detection of phenolic acids. J Chromatogr A 1049(1–2):189–194PubMedGoogle Scholar
  240. Schroder M, Vetter W (2011) High-speed counter-current chromatographic separation of phytosterols. Anal Bioanal Chem 400(10):3615–3623PubMedGoogle Scholar
  241. Schurek J, Portoles T, Hajslova J, Riddellova K, Hernandez F (2008) Application of head-space solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the determination of multiple pesticide residues in tea samples. Anal Chim Acta 611(2):163–172PubMedGoogle Scholar
  242. Seger C, Godejohann M, Tseng LH, Spraul M, Girtler A, Sturm S, Stuppner H (2005) LC-DAD-MS/SPE-NMR hyphenation. A tool for the analysis of pharmaceutically used plant extracts: identification of isobaric iridoid glycoside regioisomers from Harpagophytum procumbens. Anal Chem 77(3):878–885PubMedGoogle Scholar
  243. Seker ME, Celik A, Dost K (2012) Determination of Vitamin E isomers of grape seeds by high-performance liquid chromatography-UV detection. J Chromatogr Sci 50(2):97–101PubMedGoogle Scholar
  244. Seppanen-Laakso T, Laakso I, Hiltunen R (2002) Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal Chim Acta 465(1–2):39–62Google Scholar
  245. Shanker K, Singh SC, Pant S, Srivastava P, Yadav AK, Pandey R, Verma RK, Gupta MM (2008) Quantitative TLC analysis of sterol (24 beta-ethylcholesta-5,22E,25-triene-3 beta-ol) in agnimantha (Clerodendrum phlomidis linn). Chromatographia 67(3–4):269–274Google Scholar
  246. Sharma UK, Sharma N, Gupta AP, Kumar V, Sinha AK (2007) RP-HPTLC densitometric determination and validation of vanillin and related phenolic compounds in accelerated solvent extract of Vanilla planifolia. J Sep Sci 30(18):3174–3180PubMedGoogle Scholar
  247. Shirota O, Nagamatsu K, Sekita S, Komoto N, Kuroyanagi M, Ichikawa M, Ohta S, Ushijima M (2008) Preparative separation of the saponin lancemaside A from Codonopsis lanceolata by centrifugal partition chromatography. Phytochem Anal 19(5):403–410PubMedGoogle Scholar
  248. Shui GH, Leong LP (2004) Analysis of polyphenolic antioxidants in star fruit using liquid chromatography and mass spectrometry. J Chromatogr A 1022(1–2):67–75PubMedGoogle Scholar
  249. Sides A, Robards K, Helliwell S (2000) Developments in extraction techniques and their application to analysis of volatiles in foods. Trac-Trend Anal Chem 19(5):322–329Google Scholar
  250. Soni M, Patidar K, Jain D, Jain S (2010) Ultrasound assisted extraction (UAE): a novel extraction technique for extraction of neutraceuticals from plants. J Pharm Res 3(3):636–638Google Scholar
  251. Srivastava SK (2008) Extraction technologies for medicinal and aromatic plants. International Centre of Science and High Technology, TriesteGoogle Scholar
  252. Srivastava V, Singh M, Malasonil R, Shanker K, Verma RK, Gupta MM, Gupta AK, Khanuja SPS (2008) Separation and quantification of lignans in Phyllanthus species by a simple chiral densitometric method. J Sep Sci 31(1):47–55PubMedGoogle Scholar
  253. Stecher G, Huck CW, Popp M, Bonn GK (2001) Determination of flavonoids and stilbenes in red wine and related biological products by HPLC and HPLC-ESI-MS-MS. Fresen J Anal Chem 371(1):73–80Google Scholar
  254. Sticher O (2008) Natural product isolation. Nat Prod Rep 25(3):517–554PubMedGoogle Scholar
  255. Stoggl WM, Huck CW, Scherz H, Popp M, Bonn GK (2001) Analysis of vitamin E in food and phytopharmaceutical preparations by HPLC and HPLC-APCI-MS-MS. Chromatographia 54(3–4):179–185Google Scholar
  256. Stoll DR, Li XP, Wang XO, Carr PW, Porter SEG, Rutan SC (2007) Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A 1168(1–2):3–43PubMedCentralPubMedGoogle Scholar
  257. Stolyhwo A, Colin H, Guiochon G (1985) Analysis of triglycerides in oils and fats by liquid-chromatography with the laser-light scattering detector. Anal Chem 57(7):1342–1354PubMedGoogle Scholar
  258. Storm T, Reemtsma T, Jekel M (1999) Use of volatile amines as ion-pairing agents for the high-performance liquid chromatographic-tandem mass spectrometric determination of aromatic sulfonates in industrial wastewater. J Chromatogr A 854(1–2):175–185PubMedGoogle Scholar
  259. Subagio A, Sari P, Morita N (2001) Simultaneous determination of (+)-catechin and (−)-epicatechin in cacao and its products by high-performance liquid chromatography with electrochemical detection. Phytochem Anal 12(4):271–276PubMedGoogle Scholar
  260. Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661(1):1–16PubMedGoogle Scholar
  261. Suslick KS (1994) Encyclopaedia Britannica Yearbook of science and the future. Britannica, ChicagoGoogle Scholar
  262. Sutherland IA, Fisher D (2009) Role of counter-current chromatography in the modernisation of Chinese herbal medicines. J Chromatogr A 1216(4):740–753PubMedGoogle Scholar
  263. Syage JA, Short LC, Cai SS (2008) Atmospheric pressure photoionization—The second source for LC-MS? Lc Gc N Am 26(3):286Google Scholar
  264. Tangney CC, Driskell JA, Mcnair HM (1979) Separation of Vitamin-E isomers by high-performance liquid-chromatography. J Chromatogr 172:513–515Google Scholar
  265. Taylor LT (2009) Supercritical fluid chromatography for the 21st century. J Supercrit Fluid 47(3):566–573Google Scholar
  266. Tekel J, Hudecova T, Pecnikova K (2001) Isolation and purification techniques for pesticide residue analyses in samples of plant or animal origin. Eur Food Res Technol 213(4–5):250–258Google Scholar
  267. Theodoridis G, Lasakova M, Skerikova V, Tegou A, Giantsiou N, Jandera P (2006) Molecular imprinting of natural flavonoid antioxidants: application in solid-phase extraction for the sample pretreatment of natural products prior to HPLC analysis. J Sep Sci 29(15):2310–2321PubMedGoogle Scholar
  268. Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301(2):298–307PubMedGoogle Scholar
  269. Toribio A, Destandau E, Elfakir C, Lafosse M (2009) Hyphenation of centrifugal partition chromatography with electrospray ionization mass spectrometry using an active flow-splitter device for characterization of flavonol glycosides. Rapid Commun Mass Sp 23(12):1863–1870Google Scholar
  270. Toribio A, Nuzillard JM, Renault JH (2007) Strong ion-exchange centrifugal partition chromatography as an efficient method for the large-scale purification of glucosinolates. J Chromatogr A 1170(1–2):44–51PubMedGoogle Scholar
  271. Tranchida PQ, Shellie RA, Purcaro G, Conte LS, Dugo P, Dugo G, Mondello L (2010) Analysis of fresh and aged tea tree essential oils by using GC × GC-qMS. J Chromatogr Sci 48 (4):262Google Scholar
  272. Tung YT, Chang WC, Chen PS, Chang TC, Chang ST (2011) Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds. J Sep Sci 34(7):844–851PubMedGoogle Scholar
  273. Turne C, King JW, Mathiasson L (2001) Supercritical fluid extraction and chromatography for fat-soluble vitamin analysis. J Chromatogr A 936(1–2):215–237PubMedGoogle Scholar
  274. Tyihak E, Mincsovics E, Moricz AM (2012) Overpressured layer chromatography: from the pressurized ultramicro chamber to BioArena system. J Chromatogr A 1232:3–18PubMedGoogle Scholar
  275. Uquiche E, Jerez M, Ortiz J (2008) Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innov Food Sci Emerg 9(4):495–500Google Scholar
  276. Urakova IN, Pozharitskaya ON, Shikov AN, Kosman VM, Makarov VG (2008) Comparison of high performance TLC and HPLC for separation and quantification of chlorogenic acid in green coffee bean extracts. J Sep Sci 31(2):237–241PubMedGoogle Scholar
  277. Vaher M, Koel M (2003) Separation of polyphenolic compounds extracted from plant matrices using capillary electrophoresis. J Chromatogr A 990(1–2):225–230PubMedGoogle Scholar
  278. Valcarcel M, Tena MT (1997) Applications of supercritical fluid extraction in food analysis. Fresen J Anal Chem 358(5):561–573Google Scholar
  279. Verhoeven HA, Jonker H, De Vos RC, Hall RD (2012) Solid phase micro-extraction GC-MS analysis of natural volatile components in melon and rice. Methods Mol Biol 860:85–99PubMedGoogle Scholar
  280. Vervoort N, Daemena D, Töröka G (2008) Performance evaluation of evaporative light scattering detection and charged aerosol detection in reversed phase liquid chromatography. J Chromatogr A 1189(1–2):92–100PubMedGoogle Scholar
  281. Viron C, Saunois A, Andre P, Perly B, Lafosse M (2000) Isolation and identification of unsaturated fatty acid methyl esters from marine micro-algae. Anal Chim Acta 409(1–2):257–266Google Scholar
  282. Volpi N (2004) Separation of flavonoids and phenolic acids from propolis by capillary zone electrophoresis. Electrophoresis 25(12):1872–1878PubMedGoogle Scholar
  283. Waksmundzka-Hainos M, Oniszczuk A, Szewczyk K, Wianowska D (2007) Effect of sample-preparation methods on the HPLC quantitation of some phenolic acids in plant materials. Acta Chromatogr 19:227–237Google Scholar
  284. Waksmundzka-Hajnos M, Sherma J, Kowalska T (2008) Thin layer chromatography. In: Phytochemistry, chromatographic science series. CRC Press, Taylor & Francis, Boca RatonGoogle Scholar
  285. Wanasundara UN, Wanasundara PKJPD, Shahidi F (2005). Bailey’s industrial oil and fat products, 6th edn. Wiley, New YorkGoogle Scholar
  286. Wang LJ, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Tech 17(6):300–312Google Scholar
  287. Wang PG, He W (2011) Hydrophilic interaction liquid chromatography (HILIC) and advanced applications. CRC Press, Boca RatonGoogle Scholar
  288. Weber EJ (1984) High-Performance Liquid-Chromatography of the Tocols in Corn Grain. J Am Oil Chem Soc 61(7):1231–1234Google Scholar
  289. Wichitnithad W, Jongaroonngamsang N, Pummangura S, Rojsitthisak P (2009) A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem Anal 20(4):314–319PubMedGoogle Scholar
  290. Wilson ID (1999) The state of the art in thin-layer chromatography-mass spectrometry: a critical appraisal. J Chromatogr A 856(1–2):429–442PubMedGoogle Scholar
  291. Wu JC, Xie W, Pawliszyn J (2000) Automated in-tube solid phase microextraction coupled with HPLC-ES-MS for the determination of catechins and caffeine in tea. Analyst 125(12):2216–2222PubMedGoogle Scholar
  292. Wu JY, Lin LD, Chau FT (2001) Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason Sonochem 8(4):347–352PubMedGoogle Scholar
  293. Xiao Q, Yu CH, Xing J, Hu B (2006) Comparison of headspace and direct single-drop microextraction and headspace solid-phase microextraction for the measurement of volatile sulfur compounds in beer and beverage by gas chromatography with flame photometric detection. J Chromatogr A 1125(1):133–137PubMedGoogle Scholar
  294. Yang Q, Zhang XL, Li XY, Tang WK, Zhang JX, Fang CX, Zheng CY (2007) Coupling continuous ultrasound-assisted extraction with ultrasonic probe, solid-phase extraction and high-performance liquid chromatography for the determination of sodium Danshensu and four tanshinones in Salvia miltiorrhiza bunge. Anal Chim Acta 589(2):231–238PubMedGoogle Scholar
  295. Yu Y, Zhang QW, Li SP (2011) Preparative purification of coniferyl ferulate from Angelica sinensis oil by high performance centrifugal partition chromatography. J Med Plants Res 5(1):104–108Google Scholar
  296. Yue TL, Shao DY, Yuan YH, Wang ZL, Qiang CY (2012) Ultrasound-assisted extraction, HPLC analysis, and antioxidant activity of polyphenols from unripe apple. J Sep Sci 35(16):2138–2145PubMedGoogle Scholar
  297. Zarnowski R, Suzuki Y (2004) Expedient Soxhlet extraction of resorcinolic lipids from wheat grains. J Food Compos Anal 17(5):649–663Google Scholar
  298. Zhang ZS, Wang LJ, Li D, Jiao SS, Chen XD, Mao ZH (2008) Ultrasound-assisted extraction of oil from flaxseed. Sep Purif Technol 62(1):192–198Google Scholar
  299. Zhao X, Xu X, Su R, Zhang H, Wang Z (2012) An application of new microwave absorption tube in non-polar solvent microwave-assisted extraction of organophosphorus pesticides from fresh vegetable samples. J Chromatogr A 1229:6–12PubMedGoogle Scholar
  300. Zhou HY, Liu CZ (2006) Microwave-assisted extraction of solanesol from tobacco leaves. J Chromatogr A 1129(1):135–139PubMedGoogle Scholar
  301. Zhu JH, Qi SD, Zhang HG, Chen XG, Hu ZD (2008) Sample stacking and sweeping in microemulsion electrokinetic chromatography under pH-suppressed electroosmotic flow. J Chromatogr A 1192(2):319–322PubMedGoogle Scholar
  302. Zou J, Li N (2006) Simple and environmental friendly procedure for the gas chromatographic-mass spectrometric determination of caffeine in beverages. J Chromatogr A 1136(1):106–110PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratoire de Chimie et Physique Approche Multiéchelle des Milieux Complexes, LCP-A2MC (EA 4632) ICPMUniversité de LorraineMetzFrance

Personalised recommendations