Skip to main content

Dynamics of Redox-Sensitive Elements

  • Chapter
  • First Online:
Lake Kinneret

Part of the book series: Aquatic Ecology Series ((AQEC,volume 6))

Abstract

Following the onset of stratification in spring, the interaction between the oxy-anions of Mo, U, and Sb with reduced solutes in Lake Kinneret lower water mass (LWM) causes the removal of part of these redox-sensitive elements. However, the removal is shown here to occur also during the de-stratification stage in autumn in both the top of the HS, Fe oxide, and Fe(II) enriched LWM and a thin partially mixed layer above it. This process is shown to be associated with the fast thermocline deepening and induced by enhanced sedimentation of organic matter and Fe–Mn oxides. The primary source of this matter is hypothesized to be the resuspension of sediments deposited at those lake floor areas which become exposed to the intensive water motions in the upper layers due to thermocline deepening. The present chapter describes the effect of physical and biogeochemical regime across the mid-water temperature transition layer on the removal of redox-sensitive elements such as Mo, U, Sb, and Se.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RF, Fleisher MQ, Hurry AP (1989) Concentration, oxidation state and particulate flux of uranium in the Black Sea. Geochim Cosmochim Acta 53:2215–2224

    Article  CAS  Google Scholar 

  • Barnes CE, Cosharan JK (1991) Geochemistry of uranium in the Black Sea sediments and the oceanic U balance. Earth Planet Sci Lett 97:94–101

    Article  Google Scholar 

  • Belzile N, Chen UW, Wang Z (2001) Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides. Chem Geol 174(4):379–387

    Article  CAS  Google Scholar 

  • Berman T, Kaplan B, Chava S, Parparova R, Nishri A (1993) Effects of iron and chelation on Lake Kinneret bacteria. Microb Ecol 26(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Bertine K, Turekian K (1973) Molybdenum in marine deposits. Geochim Cosmochim Acta 37(6):1415–1434

    Article  CAS  Google Scholar 

  • Crusius J, Calvert S, Pedersen T, Sage D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic, and sulfidic conditions of deposition. Earth Planet Sci Lett 145:65–78

    Article  CAS  Google Scholar 

  • Filella M, Nelson B, Chen YW (2002) Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth Sci Rev 59:265–285

    Article  CAS  Google Scholar 

  • Frevert T, Pollingher U, Berman T (1982) Why do River Jordan algae not grow in Lake Kinneret. In: Hemphill (ed) Trace Subst Environ Health Proc Univ Mo Annu Conf 16:174–186

    Google Scholar 

  • Heltz CR, Miller CV, Charnock JM, Mosselmans JFW, Patrick RAD, Garner CD, Voughan DJ (1996) Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAF evidence. Geochim Cosmochim Acta 60:3631–3642.

    Article  Google Scholar 

  • Imberger J (2012) Environmental fluid dynamics. Academic, Waltham

    Google Scholar 

  • Leinemann CP, Taillefert M, Perret D, Galliard JF (1997) Association of cobalt and manganese in aquatic systems: chemical and microscopic evidence. Geochim Cosmochim Acta 61(7):1437–1446

    Article  Google Scholar 

  • Leuz AK (2002) Redox chemistry of antimony in aquatic systems: e.g. lakes. Diploma thesis, Carl von Ossietzky University, Oldenburg

    Google Scholar 

  • Leuz AK (2006) Redox reactions of antimony in the aquatic and terrestrial environment. Dissertation no. 16582, submitted to ETH, The Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Li YH, Burkhardt L, Buchholtz M, O’hara P, Santchi PH (1984) Partition of radiotracers between suspended particles and sea water. Geochim Cosmochim Acta 48:2011–2019

    Article  CAS  Google Scholar 

  • Lindström K (1982) Environmental requirements of the dinoflagelate Peridinium Cinctum fa. westii. PhD thesis, University of Upsala, Sweden

    Google Scholar 

  • Lindström K (1983) Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes. Dev hydrobiol 13:31–47

    Google Scholar 

  • Lindström K, Rodhe W (1978) Selenium as a micronutrient for the dinoflagellate Peridinium cinctum fa. westii. Mitt int Ver Theor Angew Limnol 21:168–173

    Google Scholar 

  • Lovely DR, Phililps EPJ, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  Google Scholar 

  • Nishri A, Sukenik A (2012). Examination of selenium species in Lake Kinneret and in the Hula Valley. KLL-IOLR report T20/2012, (in Hebrew) submitted to the Israel water Authority

    Google Scholar 

  • Nishri A, Brenner IB, Hall GEM, Taylor HE (1999). Temporal variations in dissolved selenium in Lake Kinneret (Israel). Aquat Sci 61:215–233

    Article  CAS  Google Scholar 

  • Ostrovsky I, Yacobi YZ (2010) Sedimentation flux in a large subtropical lake: spatiotemporal variations and relation to primary productivity. Limnol Oceanogr 55(5):1918–1931

    Article  Google Scholar 

  • Rimmer A, Eckert A, Nishri A, Agnon Y (2006) Evaluating hypolimnetic diffusion parameters in thermally stratified lakes. Limnol Oceanogr 51(4):1906–1914

    Article  Google Scholar 

  • Séby F, Potin-Goutier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25 ℃. Chem Geol 171:173–194

    Article  Google Scholar 

  • Shaked Y (2002) Iron redox dynamics and biogeochemical cycling in the epilimnion of Lake Kinneret. PhD dissertation, The Hebrew University Jerusalem, 190 pp

    Google Scholar 

  • Shukor MY, Rahman FA, Shamaan NA, Lee CH, Karim MI, Said MA (2008) An improved enzyme assay for molybdenum reducing activity in bacteria. Appl Biochem Biotechnol 144:293–300

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Subramanian V, Gibbs RJ (1984) Hydrous Fe and Mn oxides, scavengers of heavy metals in the aquatic environment. Crit Rev Environ Control 14(1):33–90

    Article  Google Scholar 

  • Sivan O, Erel Y, Mandler D, Nishri A (1998) The dynamic redox chemistry of iron in the epilimnion of Lake Kinneret. Geochim Comochim Acta 62(4):565–576

    Article  CAS  Google Scholar 

  • Wynne D, Pieterse AJH (2000) The effect of copper on photosynthesis, nitrate reductase and phosphatase activities in Lake Kinneret phytoplankton. Arch Hydrobiol Beih Ergebn Limnol 55:581–593

    CAS  Google Scholar 

  • Zohary T, Sukenik A, Nishri A (2012) Present–absent: a chronicle of the dinoflagellate Peridinium gatunense from Lake Kinneret. Hydrobiologia 698:161–174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ami Nishri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nishri, A., Halicz, L. (2014). Dynamics of Redox-Sensitive Elements. In: Zohary, T., Sukenik, A., Berman, T., Nishri, A. (eds) Lake Kinneret. Aquatic Ecology Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8944-8_28

Download citation

Publish with us

Policies and ethics