Skip to main content

The Fate of Organic Carbon

  • Chapter
  • First Online:

Part of the book series: Aquatic Ecology Series ((AQEC,volume 6))

Abstract

In Lake Kinneret, the majority of photosyntetically produced organic carbon (OC) is cycled through the microbial loop. Taken together, bacterial production (BP) and bacterial respiration (BR), i.e., bacterial carbon demand (BCD), accounted for about 65 % of gross primary production (GPP), measured biweekly and averaging 2.3 g C m–2 day–1 during the last decade (2001–2011). Community respiration (CR) was 2.1 g C m–2 day–1. The major contributors to total CR were bacterial and phytoplankton respiration (~80%) while zooplankton respiration accounted for the reminder. Most (~ 83 %) of the OC input were eventually respired, ~3 % lost to outflows, while ~15 % of the total OC input were transferred annually to the sediments. Here oxic mineralization is gradually replaced by anoxic processes as a function of the availability of suitable electron acceptors. After the depletion of oxygen in the hypolimnion, sulfate (500 μM) becomes the dominant oxidant. Depending on the settling flux of OC sedimentary sulfate reduction (SR) rates were measured from 0.01 to 1.67 µmol cm–3 day–1 in December and July, respectively. SR is the dominant anaerobic terminal decomposition process in Lake Kinneret and is responsible for the accumulation of sulfide in the hypolimnion to concentrations up to 400 μM. Methanogenesis is restricted to those sediment layers that are depleted of sulfate (below 3–5 cm). Seasonal profiles and 13C signatures of dissolved methane in the sediment pore water of Lake Kinneret have indicated anaerobic methane oxidation in the deeper sediments (below 20 cm), with Fe(III) as electron acceptor. Lake Kinneret resembles the first aquatic ecosystem where the existence of this process could be verified. Changes in the watershed and lake environment are suggested as possible causes for the apparently significant declines in bacterial numbers, BP, and BCD that have taken place over the last decade in Lake Kinneret.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler M, Eckert W, Sivan O (2011) Quantifying rates of methanogenesis and methanotrophy in Lake Kinneret sediments (Israel) using pore-water profiles. Limnol Oceanogr 56:1525–1535

    Article  CAS  Google Scholar 

  • Aristegui J, Montero MF, Ballesteros S, Basterretxea G, van Lenning K (1996) Planktonic primary production and microbial respiration measured by 14C assimilation and dissolved oxygen changes in coastal waters of the Antarctic Peninsula during austral summer: implications for carbon flux studies. Mar Ecol Prog Ser 132:191–201

    Article  CAS  Google Scholar 

  • Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res 113:G02024

    Google Scholar 

  • Berman T, Gerber C (1980) Differential filtration studies of carbon flux from living algae to microheterotrophs, microplankton size distribution and respiration in Lake Kinneret. Microb Ecol 6:189–198

    Article  PubMed  CAS  Google Scholar 

  • Berman T, Kaplan B (1984a) Diffusion chamber studies of carbon flux from living algae to heterotrophic bacteria. Hydrobiologia 108:127–135

    Article  Google Scholar 

  • Berman T, Kaplan B (1984b) Respiration of Lake Kinneret microplankton measured by carbon loss in the dark. Arch Hydrobiol Beih Ergeb Limnol 19:157–162

    CAS  Google Scholar 

  • Berman T, Pollingher U (1974) Annual and seasonal variations of phytoplankton, chlorophyll and photosynthesis in Lake Kinneret. Limnol Oceanogr 19:31–54

    Article  Google Scholar 

  • Berman T, Stone L (1994) Musings on the microbial loop: twenty years after. Microbial Ecol 28:251–253

    Article  CAS  Google Scholar 

  • Berman T, Wynne D (2005) Assessing phytoplankton lysis in Lake Kinneret. Limnol Oceanogr 50:526–537

    Article  Google Scholar 

  • Berman T, Hadas O, Marchaim U (1979) Heterotrophic glucose uptake and respiration in Lake Kinneret. Hydrobiologia 62:275–282

    Article  CAS  Google Scholar 

  • Berman T, Kaplan B, Chava S, Parparova R, Nishri A (1993) Effects of iron and chelation on Lake Kinneret bacteria. Microb Ecol 26:1–8

    Article  PubMed  CAS  Google Scholar 

  • Berman T, Stone L, Yacobi YZ, Kaplan B, Schlichter M, Nishri A, Pollingher U (1995) Primary production and phytoplankton in Lake Kinneret: a long-term record (1972–1993). Limnol Oceanogr 40:1064–1076

    Article  CAS  Google Scholar 

  • Berman T, Kaplan B, Chava S, Viner Y, Sherr BF, Sherr E (2001) Metabolically active bacteria in Lake Kinneret. Aquatic Microb Ecol 23:213–224

    Article  Google Scholar 

  • Berman T, Parparov A, Yacobi YZ (2004) Planktonic community production and respiration and the impact of bacteria on carbon cycling in the photic zone of Lake Kinneret. Aquat Microb Ecol 34:43–55

    Article  Google Scholar 

  • Berman T, Yacobi YZ, Parparov A, Gal G (2010) Estimation of long-term bacterial respiration and growth efficiency in Lake Kinneret. FEMS Microbiol Ecol 71:351–363

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE (1989) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxenic environments. Deep Sea Sci 36:121–138

    Article  CAS  Google Scholar 

  • Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473

    Article  PubMed  CAS  Google Scholar 

  • Capone DG, Kiene RP (1988) Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism. Limnol Oceanogr 33:725–749

    Article  CAS  Google Scholar 

  • Choi JW, Sherr EB, Sherr BS (1999) Dead or alive? A large fraction of ETS-inactive marine bacterioplankton cells, as assessed by reduction of CTC, can become ETS-active with incubation and substrate addition. Aquat Microb Ecol 18:105–115

    Article  Google Scholar 

  • Cole JJ, Findlay SEG, Pace ML (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10

    Article  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292

    Article  PubMed  CAS  Google Scholar 

  • Cypionka H (2000) Oxygen respiration in Desulfovibrio species. Ann Rev Microbiol 54:827–848

    Article  CAS  Google Scholar 

  • del Giorgio P, Williams P (2005a) Respiration in aquatic ecosystems. Oxford University Press, Oxford, 324 pp

    Book  Google Scholar 

  • del Giorgio P, Williams P (2005b) The global significance of respiration in aquatic ecosystems: from single cells to the biosphere. In: del Giorgio P, Williams P (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp. 267–303

    Chapter  Google Scholar 

  • Eckert W, Conrad R (2007) Sulfide and methane evolution in the hypolimnion of a subtropical lake: a three-year study. Biogeochemistry 82:67–76

    Article  CAS  Google Scholar 

  • Eckert W, Imberger J, Saggio A (2002) Biogeochemical evolution in response to physical forcing in the water column of a warm monomictic lake. Biogeochemistry 61:291–307

    Article  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Frund C, Cohen Y (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl Environ Ecol 58:70–77

    CAS  Google Scholar 

  • Gazeau FJ, Middelburg JM, Loijens JP et al (2007) Planktonic primary production in estuaries: a comparison of the 14C, O2 and 18O methods. Aquat Microb Ecol 46:95–106

    Article  Google Scholar 

  • Geider RJ (1997) Photosynthesis or planktonic respiration? Nature 388:132

    Article  CAS  Google Scholar 

  • Gophen M (1978) Zooplankton. In: Serruya C (ed) Lake Kinneret. W Junk, The Hague

    Google Scholar 

  • Gophen M (1981) Metabolic activity of herbivorous zooplankton in Lake Kinneret (Israel) during 1972–1977. J Plankton Res 3(1):15–24

    Article  Google Scholar 

  • Hadas O, Pinkas R (1992) Sulfate reduction process in sediments of Lake Kinneret, Israel. Hydrobiologia 235:295–301

    Article  Google Scholar 

  • Hadas O, Pinkas R (1995a) Sulfate reduction in the hypolimnion and sediments of Lake Kinneret, Israel. Freshw Biol 33:63–72

    Article  CAS  Google Scholar 

  • Hadas O, Pinkas R (1995b) Sulfate reduction processes in sediments at different sites in Lake Kinneret, Israel. Microb Ecol 30:55–66

    Article  CAS  Google Scholar 

  • Hadas O, Pinkas R (1997) Arylsulfatase and alkaline phosphatase (Apase) activity in sediments of Lake Kinneret, Israel. Water Air Soil Pollut 99:671–679

    Article  CAS  Google Scholar 

  • Hambright KD, Zohary T, Gude H (2007) Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake. Limnol Oceanogr 52:1018–1025

    Article  CAS  Google Scholar 

  • Hart DR, Berman T, Stone L (2000) Seasonal dynamics of the Lake Kinneret food web: the importance of the microbial loop. Limnol Oceanogr 45:350–361

    Article  CAS  Google Scholar 

  • Hepher B, Langer J (1969) Summary of the final research on the primary production in Lake Kinneret. Alon Techni (Mekorot) 4(2):32–35 (in Hebrew)

    Google Scholar 

  • Houser JN, Bade DL, Cole JJ, Pace ML (2003) The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and photosynthetic reduction. Biogeochemistry 64:247–269

    Article  CAS  Google Scholar 

  • Ingvorsen K, Jorgensen B (1984) Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch Microbiol 139:61–66

    Article  CAS  Google Scholar 

  • Jorgensen BB (1978) A comparison of methods for the quantification of bacterial sulfate-reduction in coastal marine sediments. Geomicrobiol J 1:11–27

    Article  Google Scholar 

  • Jumars PA, Penry DA, Baross JA, Perry MJ, Frost W (1989) Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Res 36:483–495

    Article  CAS  Google Scholar 

  • King GM, Klug MJ (1982) Comparative aspects of sulfur mineralization in sediments of eutrophic lake basin. Appl Environ Microbiol 43:1406–1412

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kirchman DL, Knees E, Hodson RE (1985). Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. App Environ Microbiol 49:599–607

    CAS  Google Scholar 

  • Kuivila KM, Murray JW, Devol AH (1989) Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. Geochim Cosmochim Acta 53:409–416

    Article  CAS  Google Scholar 

  • Landers DH, Mitchell MJ (1988) Incorporation of 35SO4 into sediments of three New-York lakes. Hydrobiologia 160:85–95

    Article  CAS  Google Scholar 

  • Liu R, Hofmann A, Gulacer FO, Favarger PY, Dominik J (1996) Methane concentration profiles in a lake with permanently anoxic hypolimnion (Lake Lugano, Switzerland-Italy). Chem Geol 133:201–209

    Article  CAS  Google Scholar 

  • Lovley DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate levels. Appl Environ Microbiol 45:187–192

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lovley DR, Klug MJ (1986) Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim Cosmochim Acta 50:11–18

    Article  CAS  Google Scholar 

  • Luz B, Barkan E, Sagi Y, Yacobi YZ (2002) Evaluation of community respiratory mechanisms with oxygen isotopes: a case study in Lake Kinneret. Limnol Oceanogr 47(1):33–42

    Article  CAS  Google Scholar 

  • Nishri A, Zohary T, Gophen M, Wynne D (1998) Lake Kinneret dissolved oxygen regime reflects long term changes in ecosystem functioning. Biogeochemistry 42:253–283

    Article  CAS  Google Scholar 

  • Nüsslein B, Chin KJ, Eckert W, Conrad R (2001) Evidence for anaerobic synthrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ Microbiol 3:460–470

    Article  PubMed  Google Scholar 

  • Nüsslein B, Eckert W, Conrad R (2003) Stable isotope biogeochemistry of methane formation in profundal sediments of Lake Kinneret (Israel). Limnol Oceanogr 48(4):1439–1446

    Article  Google Scholar 

  • Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ostrovsky I (2003) Methane bubbles in Lake Kinneret: quantification, temporal, and spatial heterogeneity. Limnol Oceanogr 48:1030–1036

    Article  CAS  Google Scholar 

  • Ostrovsky I, McGinnis DF, Lapidus L, Eckert W (2008) Quantifying gas ebullition with echo sounder: the role of methane transport with bubbles in a medium-sized lake. Limnol Oceanogr Method 6:105–118

    Article  CAS  Google Scholar 

  • Ostrovsky I, Tegowski J (2010) Hydroacoustic analysis of spatial and temporal variability of bottom sediment characteristics in Lake Kinneret in relation to water level fluctuations. Geo-Mar Lett 30:261–269

    Article  CAS  Google Scholar 

  • Ostrovsky I, Yacobi YZ (2010) Sedimentation flux in a large subtropical lake: spatiotemporal variations and relation to primary productivity. Limnol Oceanogr 55(5):1918–1931

    Google Scholar 

  • Pace ML, Prairie YT (2005) Respiration in lakes. In: del Giorgio P, Williams P (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 103–121, (324 pp)

    Chapter  Google Scholar 

  • Pinhassi J, Berman T (2003) Differential growth ersponse of colony-forming α- and γ-proteobacteria in dilution culture and nutrient addition experiments in Lake Kinneret, eastern Mediterranean and Gulf of Eilat. Appl Environ Microbiol 69:199–211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Plugge CM, Zhang W, Sholten JCM, Stams AJM (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol. doi:10.3389/fmicb.2011.00081

    Google Scholar 

  • Postgate JR (1984) The sulphate reducing bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Pringault O, Tassas V, Rochelle-Newall E (2007) Consequences of light respiration on the determination of production in pelagic systems. Biogeosciences 4:105–114

    Article  CAS  Google Scholar 

  • Pringault O, Tesson S, Rochelle-Newall E (2009) Respiration in the light and bacterio-phytoplankton coupling in a coastal environment. Microb Ecol 57:321–334

    Article  PubMed  Google Scholar 

  • Riemann B, Fuhrman J, Azam F (1982) Bacterial secondary production in freshwater measured by 3 H-thymidine incorporation method. Microb Ecol 8:101–114

    Article  PubMed  CAS  Google Scholar 

  • Robinson C (2008) Heterotrophic bacterial respiration. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley, New York, pp 299–334

    Chapter  Google Scholar 

  • Rudd JWM, Taylor CD (1980) Methane cycling in aquatic environments. Adv Aquat Microbiol 2:77–150

    CAS  Google Scholar 

  • Scavia D, Lang GA, Kitchel JF (1988) Dynamics of Lake Michigan plankton: a model evaluation of nutrient loading, competition, and predation. Can J Fish Aquat Sci 45(1):165–177

    Article  Google Scholar 

  • Schmidt U, Conrad R (1993) Hydrogen, carbon monoxide, and methane dynamics in lake constance. Limnol Oceanogr 38:1214–1226

    Article  CAS  Google Scholar 

  • Schwarz JIK, Eckert W, Conrad R (2007a) Community structure of Archaea and Bacteria in a profundal lake sediment, Lake Kinneret (Israel). Syst Appl Microbiol 30(3):239–254

    Article  CAS  Google Scholar 

  • Schwarz JIK, Lueders T, Eckert W, Conrad R (2007b) Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable-isotope probing of rRNA. Environ Microbiol 9:223–237

    Article  CAS  Google Scholar 

  • Schwarz JIK, Eckert W, Conrad R (2008) Response of the methanogenic microbial community of a profundal lake sediment (Lake Kinneret, Israel) to algal deposition. Limnol Oceanogr 53:113–121

    Article  CAS  Google Scholar 

  • Serruya C (1978) Water chemistry. In: Serruya C (ed) Lake Kinneret. W Junk, The Hague

    Chapter  Google Scholar 

  • Serruya C, Edelstein M, Pollingher U, Serruya S (1974) Lake Kinneret sediments: nutrient composition of the pore water and mud water exchanges. Limnol Oceanogr 19:489–508

    Article  CAS  Google Scholar 

  • Serruya C, Gophen M, Pollingher U (1980) Lake Kinneret: carbon flow patterns and ecosystem management. Arch Hydrobiol 88(3):265–302

    Google Scholar 

  • Sherr BF, Sherr EB, Berman T (1982) Decomposition of organic detritus: a selective role for microflagellate protozoa. Limnol Oceanogr 27:765–769

    Article  CAS  Google Scholar 

  • Sinke AJC, Cornelese AA, Cappenberg TC, Zehnder AJB (1992) Seasonal variation in sulfate reduction and methanogenesis in peaty sediments of eutrophic Lake Loosdrecht, The Netherlands. Biogeochemistry 16:43–61

    Article  CAS  Google Scholar 

  • Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56:1536–1544

    Article  CAS  Google Scholar 

  • Skyring GW (1988) Acetate as the main energy substrate for the sulfate reducing bacteria in Lake Eliza (South Australia) hypersaline sediments. FEMS Microbiol Lett 53:87–94

    Article  CAS  Google Scholar 

  • Smith RL, Klug MJ (1981) Electron donors utilized by sulfate reducing bacteria in eutrophic lake sediments. Appl Environ Microbiol 42:116–121

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith RL, Oremland RS (1987) Big Soda Lake (Nevada) 2. Pelagic sulfate reduction. Limnol Oceanogr 32:794–803

    Article  CAS  Google Scholar 

  • Stiller M, Magaritz M (1974) Carbon-13 enriched carbonate in interstitial waters of Lake Kinneret. Limnol Oceanogr 19:849–853

    Article  CAS  Google Scholar 

  • Stone L, Berman T, Bonner R, Barry S, Weeks SW (1993) Lake Kinneret: a seasonal model for carbon flux through the planktonic biota. Limnol Oceanogr 38:1680–1695

    Article  CAS  Google Scholar 

  • Strayer D (1988) On the limits to secondary production. Limnol Oceanogr 33(5):1217–1220

    Article  Google Scholar 

  • Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  PubMed  CAS  Google Scholar 

  • Tessenow U, Frevert W, Hofgastner W, Moser A (1997) Ein simultanschliesender serienwasserschopfer fur sedimentkontaktwasser mit fotoelektrischer selbstauslosung und fakultativem sedimentstecher. Arch Hydrobiol Suppl 48:438–452

    Google Scholar 

  • Thebrath B, Rothfuss F, Whiticar MJ, Conrad R (1993) Methane production in littoral sediment of Lake Constance. FEMS Microbiol Lett 102:279–289

    Article  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Methabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  PubMed  CAS  Google Scholar 

  • Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2(5):477–484

    Article  PubMed  CAS  Google Scholar 

  • Westrich JT, Berner RA (1988) The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiol J 6:99–117

    Article  CAS  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (1992) The methanogenic bacteria. In: Balowes A, Truper HG, Dwarkin M, Harder W, Schliefer KH (eds.) The Prokaryotes, 2nd edn. Springer, New York, pp 719–767

    Google Scholar 

  • Williamson CE, Saros JE, Vincent WF, Smold JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Article  Google Scholar 

  • Winberg GG (1960) Primary production of water bodies. The Academy of Sciences of BSSR, Minsk, 328 pp (in Russian)

    Google Scholar 

  • Yacobi YZ (2006) Temporal and vertical variation of chlorophyll a concentration, phytoplankton photosynthetic activity and light attenuation in Lake Kinneret: possibilities and limitations for simulations by remote sensing. J Plankton Res 28:725–736

    Article  CAS  Google Scholar 

  • Zohary T, Hadas O, Pollingher U, Kaplan B, Pinkas R, Güde H (2000) The effect of nutrients (N, P) on the decomposition of Peridinium gatunense cells and thecae. Limnol Oceanogr 45:123–130

    Article  CAS  Google Scholar 

  • Zohary T, Ostrovsky I (2011) Ecological impacts of excessive water level fluctuations in stratified freshwater lake. Inland Waters 1:47–59

    Article  Google Scholar 

  • Zohary T, Nishri A, Sukenik A (2012) Present-absent: a chronicle of the dinoflagellate Peridinium gatunense from Lake Kinneret. Hydrobiologia 698:161–174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berman, T. et al. (2014). The Fate of Organic Carbon. In: Zohary, T., Sukenik, A., Berman, T., Nishri, A. (eds) Lake Kinneret. Aquatic Ecology Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8944-8_25

Download citation

Publish with us

Policies and ethics