Advertisement

Neuro-Robotics pp 105-155 | Cite as

Mimicking Human-Like Leg Function in Prosthetic Limbs

  • Martin Grimmer
  • André Seyfarth
Chapter
Part of the Trends in Augmentation of Human Performance book series (TAHP, volume 2)

Abstract

Human upright locomotion is a complex behavior depending on manifold requirements. Bones, muscles, cartilage and tendons provide mechanical infrastructure. Central nervous commands, reflex mechanisms from the spinal cord level or also preflexes defined by actuator properties provide input to create motion patterns like walking or running. Due to dysvascularity, infections or traumatic events parts of the biological framework can get lost. Until the end of the twentieth century mostly passive structures were used to replace amputees lower limbs. Full functionality like in the biological system can not be provided because of missing sensory information and power source. Innovations in actuator, battery and micro electronics technology make it possible to improve prosthetic design. A first innovation was introduced with semi-active devices using microprocessor controlled dampers to modulate prosthetic joint behavior similar to isometric or eccentric muscle function. A further step is to power the joints to emulate concentric muscle function. Combined with ingenious control mechanisms this could potentially provide every possible movement task. Twenty-six powered prosthetic systems and further passive prototypes are presented in this work. Mechanical and control solutions are introduced. Amputee gait in various daily life situations using passive, semi-active and powered prostheses is compared. Areas for improvements are discussed.

Keywords

Prosthetics Human Gait Walking Energy Power Biomechanics Control Spring 

Abbreviations

CE

contractile element

CIC

computational intrinsic control

CoM

center of mass

EMG

electromyography

ER

energy requirements

ESAR

energy storage and return

FPWS

fastest possible walking speed

GRF

ground reaction force

IEC

interactive extrinsic control

IL

intact limb

PE

parallel element

PEA

parallel elastic actuator

PP

peak power

PWS

preferred walking speed

RL

residual prosthetic limb

RoM

range of motion

SACH

solid ankle cushioned heel

SE

series element

SEA

series elastic actuator

TF

transfemoral

TT

transtibial

UPS

unidirectional parallel spring

References

  1. 1.
    Agrawal V, Gailey R, Gaunaurd I, Gailey R III, O’Toole C (2011) Weight distribution symmetry during the sit-to-stand movement of unilateral transtibial amputees. Ergonomics 54(7):656–664PubMedGoogle Scholar
  2. 2.
    Aldridge JM, Sturdy JT, Wilken JM (2012) Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation. Gait Posture 36(2):291–295. ElsevierGoogle Scholar
  3. 3.
    Alzaydi AA, Cheung A, Joshi N, Wong S (2011) Active prosthetic knee fuzzy logic-PID motion control, sensors and test platform design. Int J Sci Eng Res 2:1–17Google Scholar
  4. 4.
    Aminian K, Robert P, Jequier E, Schutz Y (1995) Estimation of speed and incline of walking using neural network. IEEE Trans Instrum Meas 44(3):743–746Google Scholar
  5. 5.
    Au SK, Bonato P, Herr H (2005) An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study. In: 9th international conference on rehabilitation robotics (ICORR 2005), Chicago, 2005. IEEE, pp 375–379Google Scholar
  6. 6.
    Au S, Weber J, Herr H (2009) Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Trans Robot 25(1):51–66Google Scholar
  7. 7.
    Battye C, Nightingale A, Whillis J (1955) The use of myo-electric currents in the operation of prostheses. J Bone Jt Surg, British Volume 37(3):506–510Google Scholar
  8. 8.
    Bellman RD, Holgate MA, Sugar TG (2008) Sparky 3: design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob 2008), Scottsdale, 2008. IEEE, pp 511–516Google Scholar
  9. 9.
    Bellmann M, Schmalz T, Ludwigs E, Blumentritt S (2012) Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Biomed Tech 57:435–444Google Scholar
  10. 10.
    Blumentritt S, Bellmann M (2010) Potenzielle Sicherheit von aktuellen nicht-mikroprozessor-und mikroprozessorgesteuerten Prothesenkniegelenken. Orthopädie-Tech nik 61:788–799Google Scholar
  11. 11.
    Blumentritt S, Schmalz T, Jarasch R (2009) The safety of C-Leg: biomechanical tests. JPO J Prosthet Orthot 21(1):2Google Scholar
  12. 12.
    Blumentritt S, Bellmann M, Ludwigs E, Schmalz T (2012) Zur biomechanik des mikroprozessorgesteuerten prothesenkniegelenks genium. Orthopädie Technik 01:24–35Google Scholar
  13. 13.
    Boonstra A, Fidler V, Eisma W (1993) Walking speed of normal subjects and amputees: aspects of validity of gait analysis. Prosthet Orthot Int 17(2):78–82PubMedGoogle Scholar
  14. 14.
    Borjian R (2009) Design, modeling, and control of an active prosthetic knee. Master’s thesis, University of WaterlooGoogle Scholar
  15. 15.
    Browning RC, Modica JR, Kram R, Goswami A et al (2007) The effects of adding mass to the legs on the energetics and biomechanics of walking. Med Sci Sports Exerc 39(3):515PubMedGoogle Scholar
  16. 16.
    Budaker B (2012) Active driven prosthesis using a bevel helical gearbox in combination with a brushless DC-motor. In: Proceedings BMT 2012, 46. DGBMT Jahrestagung, Jena – track R. prevention and rehabilitation engineering, JenaGoogle Scholar
  17. 17.
    Budaker B (2012) Auslegung von Multidomänen-Systemen-Analyse, Modellierung und Realisierung von mechatronischen Systemen am Beispiel einer aktiven Knieprothese. Ph.D. thesis, Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA), StuttgartGoogle Scholar
  18. 18.
    Cherelle P, Matthys A, Grosu V, Brackx B, Van Damme M, Vanderborght B, Lefeber D (2012) The AMP-Foot 2.0: a powered transtibial prosthesis that mimics intact ankle behavior. In: 9th national congress on theoretical and applied mechanics, BrusselsGoogle Scholar
  19. 19.
    Childress DS (1985) Historical aspects of powered limb prostheses. Clin Prosthet Orthot 9(1):2–13Google Scholar
  20. 20.
    Clauser CE, McConville JT, Young JW (1969) Weight, volume, and center of mass of segments of the human body. Technical report, DTIC DocumentGoogle Scholar
  21. 21.
    Collins S, Kuo A (2010) Recycling energy to restore impaired ankle function during human walking. PloS One 5(2):e9307PubMedCentralPubMedGoogle Scholar
  22. 22.
    Colombo C, Marchesin E, Vergani L, Boccafogli E, Verni G (2011) Design of an ankle prosthesis for swimming and walking. Procedia Eng 10:3503–3509Google Scholar
  23. 23.
    Coupland R (1997) Assistance for victims of anti-personnel mines: needs, constraints and strategy, vol 5. International Committee of the Red Cross, Geneva, pp 1–18Google Scholar
  24. 24.
    Crompton R, Pataky T, Savage R, D’Août K, Bennett M, Day M, Bates K, Morse S, Sellers W (2012) Human-like external function of the foot, and fully upright gait, confirmed in the 3.66 million year old laetoli hominin footprints by topographic statistics, experimental footprint-formation and computer simulation. J R Soc Interface 9(69):707–719PubMedCentralPubMedGoogle Scholar
  25. 25.
    Cutti AG, Garofalo P, Janssens K, Davalli A, Sacchetti R, Cutti AG (2007) Biomechanical analysis of an upper limb amputee and his innovative myoelectric prosthesis: a case study concerning the otto bock “Dynamic Arm”. Orthop-Tech Q (1):6–15Google Scholar
  26. 26.
    Cutti A, Raggi M, Garofalo P, Giovanardi A, Filippi M, Davalli A (2008) The effects of the ‘Power Knee’ prosthesis on amputees metabolic cost of walking and symmetry of gait-preliminary results. Gait Posture 28:S38Google Scholar
  27. 27.
    Czerniecki J, Gitter A, Munro C (1991) Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet. J Biomech 24(1):63–65PubMedGoogle Scholar
  28. 28.
    Dal U, Erdogan T, Resitoglu B, Beydagi H (2010) Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture 31(3):366–369PubMedGoogle Scholar
  29. 29.
    Delis AL, Carvalho J, Seisdedos CV, Borges GA, da Rocha AF (2010) Myoelectric control algorithms for leg prostheses based on data fusion with proprioceptive sensors. In: Proceedings ISSNIP biosignals and biorobotics conference, Vitoria, 2010, pp 137–142Google Scholar
  30. 30.
    Delis AL, Carvalho JL, da Rocha AF, Nascimento FA, Borges GA (2011) Myoelectric knee angle estimation algorithms for control of active transfemoral leg prostheses. Intechopen.comGoogle Scholar
  31. 31.
    DeVita P, Helseth J, Hortobagyi T (2007) Muscles do more positive than negative work in human locomotion. J Exp Biol 210(Pt 19):3361PubMedCentralPubMedGoogle Scholar
  32. 32.
    Donelan J, Li Q, Naing V, Hoffer J, Weber D, Kuo A (2008) Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319(5864):807–810PubMedGoogle Scholar
  33. 33.
    Duraiswami P, Orth M, Tuli S (1971) 5000 years of orthopaedics in India. Clin Orthop Relat Res 75:269PubMedGoogle Scholar
  34. 34.
    Durfee W, Xia J, Hsiao-Wecksler E (2011) Tiny hydraulics for powered orthotics. In: IEEE international conference on rehabilitation robotics (ICORR), Zurich, 2011. IEEE, pp 1–6Google Scholar
  35. 35.
    Duvinage M, Castermans T, Dutoit T (2011) Control of a lower limb active prosthesis with eye movement sequences. In: IEEE symposium on computational intelligence, cognitive algorithms, mind, and brain (CCMB), Paris, 2011. IEEE, pp 1–7Google Scholar
  36. 36.
    Dyck W, Onyshko S, Hobson D, Winter D, Quanbury A (1975) A voluntarily controlled electrohydraulic above-knee prosthesis. Bull Prosthet Res 10(23–26):169Google Scholar
  37. 37.
    Eilenberg M, Geyer H, Herr H (2010) Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Trans Neural Syst Rehabil Eng 18(2):164–173PubMedGoogle Scholar
  38. 38.
    Endolite. www.endolite.com
  39. 39.
    Eslamy M, Grimmer M, Seyfarth A (2012) Effects of unidirectional parallel springs on required peak power and energy in powered prosthetic ankles: comparison between different active actuation concepts. In: IEEE international conference on robotics and biomimetics (ROBIO), GuangzhouGoogle Scholar
  40. 40.
    Eslamy M, Grimmer M, Rinderknecht S, Seyfarth A (2013) Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective. In: IEEE international conference on rehabilitation robotics (ICORR), SeattleGoogle Scholar
  41. 41.
    Ferris DP, Czerniecki JM, Hannaford B et al (2005) An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech 21(2):189PubMedCentralPubMedGoogle Scholar
  42. 42.
    Ferris AE, Aldridge JM, Rábago CA, Wilken JM (2012) Evaluation of a powered ankle-foot prosthetic system during walking. Arch Phys Med Rehabil 93(11):1911–1918. ElsevierGoogle Scholar
  43. 43.
    Fey N, Klute G, Neptune R (2011) The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin Biomech 26(10):1025–1032Google Scholar
  44. 44.
    Fradet L, Alimusaj M, Braatz F, Wolf SI (2010) Biomechanical analysis of ramp ambulation of transtibial amputees with an adaptive ankle foot system. Gait Posture 32(2):191–198PubMedGoogle Scholar
  45. 45.
    Freedom Innovations. www.freedom-innovations.com
  46. 46.
    Gailey R, Allen K, Castles J, Kucharik J, Roeder M (2008) Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev 45(1):15PubMedGoogle Scholar
  47. 47.
    Gates DH, Aldridge JM, Wilken JM (2013) Kinematic comparison of walking on uneven ground using powered and unpowered prostheses. Clin Biomech 28(4):467–472. ElsevierGoogle Scholar
  48. 48.
    Gefen A, Megido-Ravid M, Itzchak Y (2001) In vivo biomechanical behavior of the human heel pad during the stance phase of gait. J Biomech 34(12):1661–1665PubMedGoogle Scholar
  49. 49.
    Geil M (2001) Energy loss and stiffness properties of dynamic elastic response prosthetic feet. JPO J Prosthet Orthot 13(3):70Google Scholar
  50. 50.
    Geng Y, Yang P, Xu X, Chen L (2012) Design and simulation of active transfemoral prosthesis. In: 24th Chinese control and decision conference (CCDC), Taiyuan, 2012. IEEE, pp 3724–3728Google Scholar
  51. 51.
    Geyer H, Herr H (2010) A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng 18(3):263–273PubMedGoogle Scholar
  52. 52.
    Geyer H, Seyfarth A, Blickhan R (2003) Positive force feedback in bouncing gaits? Proc R Soc Lond Ser B Biol Sci 270(1529):2173–2183Google Scholar
  53. 53.
    Gitter A, Czerniecki J, DeGroot D (1991) Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Rehabil 70(3):142PubMedGoogle Scholar
  54. 54.
    Goltz F, Freusberg A, Gergens E (1875) Ueber gefässerweiternde nerven. Pflügers Arch Eur J Physiol 11(1):52–99Google Scholar
  55. 55.
    Greitemann B, Bui-Khac H (2006) Wie haufig sturzen an der unteren Extremitat amputierte Patienten? Medizinisch Orthopadische Technik 126(5):81Google Scholar
  56. 56.
    Grimes DL (1979) An active multi-mode above knee prosthesis controller. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  57. 57.
    Grimes D, Flowers W, Donath M (1977) Feasibility of an active control scheme for above knee prostheses. J Biomech Eng 99:215Google Scholar
  58. 58.
    Grimmer M, Seyfarth A (2011) Stiffness adjustment of a series elastic actuator in a knee prosthesis for walking and running: the trade-off between energy and peak power optimization. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), San Francisco. IEEE, pp 1811–1816Google Scholar
  59. 59.
    Grimmer M, Seyfarth A (2011) Stiffness adjustment of a series elastic actuator in an ankle-foot prosthesis for walking and running: the trade-off between energy and peak power optimization. In: IEEE international conference on robotics and automation (ICRA), Shanghai. IEEE, pp 1439–1444Google Scholar
  60. 60.
    Grimmer M, Eslamy M, Gliech S, Seyfarth A (2012) A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In: IEEE international conference on robotics and automation (ICRA), St. Paul, 2012. IEEE, pp 2463–2470Google Scholar
  61. 61.
    Ha KH, Varol HA, Goldfarb M (2011) Volitional control of a prosthetic knee using surface electromyography. IEEE Trans Biomed Eng 58(1):144–151PubMedGoogle Scholar
  62. 62.
    Hafner B (2005) Clinical prescription and use of prosthetic foot and ankle mechanisms: a review of the literature. JPO J Prosthet Orthot 17(4):S5Google Scholar
  63. 63.
    Hafner B, Sanders J, Czerniecki J, Fergason J (2002) Energy storage and return prostheses: does patient perception correlate with biomechanical analysis? Clin Biomech 17(5):325–344Google Scholar
  64. 64.
    Hargrove L, Simon AM, Finucane SB, Lipschutz RD (2011) Myoelectric control of a powered transfemoral prosthesis during non-weight-bearing activities. In: Proceedings of the 2011 MyoElectric controls/powered prosthetics symposium, Fredericton. Myoelectric SymposiumGoogle Scholar
  65. 65.
    Heller G, Günster C, Swart E (2005) Über die Häufigkeit von Amputationen unterer Extremitäten in Deutschland about the frequency of lower limb amputations. Dtsch Med Wochenschr 130(28/29):1689–1690PubMedGoogle Scholar
  66. 66.
    Herr H, Grabowski A (2012) Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proc R Soc B Biol Sci 279(1728):457–464Google Scholar
  67. 67.
    Herr HM, Au SK, Dilworth P, Paluska DJ (2012) Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components. US Patent App. 13/348,570Google Scholar
  68. 68.
    Highsmith MJ, Kahle JT, Carey SL, Lura DJ, Dubey RV, Quillen WS (2010) Kinetic differences using a Power Knee and C-Leg while sitting down and standing up: a case report. JPO J Prosthet Orthot 22(4):237–243Google Scholar
  69. 69.
    Highsmith MJ, Kahle JT, Carey SL, Lura DJ, Dubey RV, Csavina KR, Quillen WS (2011) Kinetic asymmetry in transfemoral amputees while performing sit to stand and stand to sit movements. Gait Posture 34(1):86–91PubMedGoogle Scholar
  70. 70.
    Hitt JK, Bellman R, Holgate M, Sugar TG, Hollander KW (2007) The sparky (spring ankle with regenerative kinetics) project: design and analysis of a robotic transtibial prosthesis with regenerative kinetics. In: Design engineering technology conferences and computers in information and engineering conference (IDETC/CIE), Las Vegas. ASMEGoogle Scholar
  71. 71.
    Hitt J, Merlo J, Johnston J, Holgate M, Boehler A, Hollander K, Sugar T (2010) Bionic running for unilateral transtibial military amputees. DTIC documentGoogle Scholar
  72. 72.
    Hitt J, Sugar T, Holgate M, Bellman R (2010) An active foot-ankle prosthesis with biomechanical energy regeneration. J Med Devices 4:011,003Google Scholar
  73. 73.
  74. 74.
    Hof AL, van Bockel RM, Schoppen T, Postema K (2007) Control of lateral balance in walking: experimental findings in normal subjects and above-knee amputees. Gait Posture 25(2):250–258PubMedGoogle Scholar
  75. 75.
    Holgate M, Sugar T, Bohler A (2009) A novel control algorithm for wearable robotics using phase plane invariants. In: IEEE international conference on robotics and automation (ICRA), Kobe. IEEE, pp 3845–3850Google Scholar
  76. 76.
    Hollander K, Sugar T (2005) Design of the robotic tendon. In: Design of medical devices conference (DMD), MinneapolisGoogle Scholar
  77. 77.
    Hoover C, Fite K (2010) Preliminary evaluation of myoelectric control of an active transfemoral prosthesis during stair ascent. In: Proceedings ASME dynamic systems and controls conference, Cambridge. Paper no. DSCC2010-4158Google Scholar
  78. 78.
    Hoover CD, Fulk GD, Fite KB (2013) Stair ascent with a powered transfemoral prosthesis under direct myoelectric control. Trans Mechatron 18:1191–1200Google Scholar
  79. 79.
    Horn G (1972) Electro-control: am EMG-controlled A/K prosthesis. Med Biol Eng Comput 10(1):61–73Google Scholar
  80. 80.
  81. 81.
    Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB (2011) Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans Biomed Eng 58(10):2867–2875PubMedCentralPubMedGoogle Scholar
  82. 82.
    Islam MR, Haque A, Amin S, Rabbani K (2011) Design and development of an EMG driven microcontroller based prosthetic leg. J Med Phys 4(1):107–114Google Scholar
  83. 83.
  84. 84.
    Johansson J, Sherrill D, Riley P, Bonato P, Herr H (2005) A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil 84(8):563PubMedGoogle Scholar
  85. 85.
    Kahle JT, Highsmith M, Hubbard S (2008) Comparison of nonmicroprocessor knee mechanism versus C-Leg on prosthesis evaluation questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. J Rehabil Res Dev 45(1):1PubMedGoogle Scholar
  86. 86.
    Kuitunen S, Komi P, Kyröläinen H et al (2002) Knee and ankle joint stiffness in sprint running. Med Sci Sports Exerc 34(1):166PubMedGoogle Scholar
  87. 87.
    Kulkarni J, Wright S, Toole C, Morris J, Hirons R (1996) Falls in patients with lower limb amputations: prevalence and contributing factors. Physiotherapy 82(2):130–136Google Scholar
  88. 88.
    Lambrecht BGA (2008) Design of a hybrid passive-active prosthesis for above-knee amputees. ProQuest LLC, Ann ArborGoogle Scholar
  89. 89.
    Lambrecht BG, Kazerooni H (2009) Design of a semi-active knee prosthesis. In: IEEE international conference on robotics and automation (ICRA’09), Kobe, 2009. IEEE, pp 639–645Google Scholar
  90. 90.
    Latif T, Ellahi C, Choudhury T, Rabbani K (2008) Design of a cost-effective EMG driven bionic leg. In: International conference on electrical and computer engineering (ICECE 2008), Dhaka, 2008. IEEE, pp 80–85Google Scholar
  91. 91.
    Lawson B, Varol HA, Huff A, Erdemir E, Goldfarb M (2013) Control of stair ascent and descent with a powered transfemoral prosthesis. IEEE Trans Neural Syst Rehabil Eng 21(3):466–473. IEEEGoogle Scholar
  92. 92.
    Lee IM, Paffenbarger RS (2000) Associations of light, moderate, and vigorous intensity physical activity with longevity the Harvard Alumni Health Study. Am J Epidemiol 151(3):293–299PubMedGoogle Scholar
  93. 93.
    Lim J (2008) The mechanical design and analysis of an active prosthetic knee. University of Waterloo, WaterlooGoogle Scholar
  94. 94.
    Lipfert S (2010) Kinematic and dynamic similarities between walking and running. Verlag Dr. Kovac, Hamburg. ISBN:978-3-8300-5030-8Google Scholar
  95. 95.
    Liu M, Datseris P, Huang HH (2012) A prototype for smart prosthetic legs-analysis and mechanical design. Adv Mater Res 403:1999–2006Google Scholar
  96. 96.
    Mai A, Commuri S (2011) Gait identification for an intelligent prosthetic foot. In: IEEE international symposium on intelligent control (ISIC), Denver, 2011. IEEE, pp 1341–1346Google Scholar
  97. 97.
    Mancinelli C, Patritti BL, Tropea P, Greenwald RM, Casler R, Herr H, Bonato P (2011) Comparing a passive-elastic and a powered prosthesis in transtibial amputees. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC), Boston, 2011. IEEE, pp 8255–8258Google Scholar
  98. 98.
    Markowitz J, Krishnaswamy P, Eilenberg MF, Endo K, Barnhart C, Herr H (2011) Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model. Philos Trans R Soc B Biol Sci 366(1570):1621–1631Google Scholar
  99. 99.
    Martin J, Pollock A, Hettinger J (2010) Microprocessor lower limb prosthetics: review of current state of the art. JPO J Prosthet Orthot 22(3):183–193Google Scholar
  100. 100.
    Martinez Villalpando EC (2012) Design and evaluation of a biomimetic agonist-antagonist active knee prosthesis. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  101. 101.
    Martinez-Villalpando E, Herr H (2009) Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. J Rehabil Res Dev 46:361–374PubMedGoogle Scholar
  102. 102.
    Martinez-Villalpando EC, Mooney L, Elliott G, Herr H (2011) Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC), Boston, 2011. IEEE, pp 8519–8522Google Scholar
  103. 103.
    Miller WC, Speechley M, Deathe B (2001) The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Arch Phys Med Rehabil 82(8):1031–1037PubMedGoogle Scholar
  104. 104.
    Mirfakhrai T, Madden JD, Baughman RH (2007) Polymer artificial muscles. Mater Today 10(4):30–38Google Scholar
  105. 105.
    Mutlu L, Uyar E, Baser O, Cetin L (2011) Modelling of an under-hip prosthesis with ankle and knee trajectory control by using human gait analysis. In: World congress, Milano, vol 18, pp 9668–9673Google Scholar
  106. 106.
    Nandi G, Ijspeert A, Chakraborty P, Nandi A (2009) Development of adaptive modular active leg (AMAL) using bipedal robotics technology. Robot Auton Syst 57(6):603–616Google Scholar
  107. 107.
    Nandy A, Mondal S, Chakraborty P, Nandi G (2012) Development of a robust microcontroller based intelligent prosthetic limb. In: Contemporary computing. Springer, pp 452–462Google Scholar
  108. 108.
    Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229–258PubMedGoogle Scholar
  109. 109.
    Nielsen DH, Shurr DG, Golden JC, Meier K (1988) Comparison of energy cost and gait efficiency during ambulation in below-knee amputees using different prosthetic feet-a preliminary report. JPO J Prosthet Orthot 1(1):24Google Scholar
  110. 110.
    Niemitz C (2010) The evolution of the upright posture and gait-a review and a new synthesis. Naturwissenschaften 97(3):241–263PubMedCentralPubMedGoogle Scholar
  111. 111.
    Nigg BM, Herzog W, Herzog W (1994) Biomechanics of the musculo-skeletal system. Wiley, New YorkGoogle Scholar
  112. 112.
    Nolan L, Lees A (2000) The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees. Prosthet Orthot Int 24(2):117–125PubMedGoogle Scholar
  113. 113.
    Nolan L, Wit A, Dudziński K, Lees A, Lake M, Wychowański M (2003) Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 17(2):142–151PubMedGoogle Scholar
  114. 114.
    O’Donnell F, Brundage J, Wertheimer E, Olive D, Clark L (2012) Medical surveillance monthly report. vol 19, number 6. Technical report, DTIC DocumentGoogle Scholar
  115. 115.
    Orendurff MS, Segal AD, Klute GK, McDowell ML, Pecoraro JA, Czerniecki JM (2006) Gait efficiency using the C-Leg. J Rehabil Res Dev 43(2):239PubMedGoogle Scholar
  116. 116.
  117. 117.
    Ottobock. www.ottobock.com
  118. 118.
    Pain MT, Challis JH (2001) The role of the heel pad and shank soft tissue during impacts: a further resolution of a paradox. J Biomech 34(3):327–333PubMedGoogle Scholar
  119. 119.
    Panzenbeck JT, Klute GK (2012) A powered inverting and everting prosthetic foot for balance assistance in lower limb amputees. JPO J Prosthet Orthot 24(4):175–180Google Scholar
  120. 120.
    Parsan A, Tosunoglu S (2012) A novel control algorithm for ankle-foot prosthesis. In: Florida conference on recent advances in robotics, Boca RatonGoogle Scholar
  121. 121.
    Pierrynowski MR, Morrison JB (1985) A physiological model for the evaluation of muscular forces in human locomotion: theoretical aspects. Math Biosci 75(1):69–101Google Scholar
  122. 122.
    Pillai MV, Kazerooni H, Hurwich A (2011) Design of a semi-active knee-ankle prosthesis. In: IEEE international conference on robotics and automation (ICRA), Shanghai, 2011. IEEE, pp 5293–5300Google Scholar
  123. 123.
    Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R (2005) Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171(9):972–977PubMedGoogle Scholar
  124. 124.
    Popovic D, Tomovic R, Tepavac D, Schwirtlich L (1991) Control aspects of active above-knee prosthesis. Int J Man-Mach Stud 35(6):751–767Google Scholar
  125. 125.
    Postema K, Hermens H, De Vries J, Koopman H, Eisma W (1997) Energy storage and release of prosthetic feet part 1: biomechanical analysis related to user benefits. Prosthet Orthot Int 21(1):17–27PubMedGoogle Scholar
  126. 126.
    Powers CM, Rao S, Perry J (1998) Knee kinetics in trans-tibial amputee gait. Gait Posture 8(1):1–7PubMedGoogle Scholar
  127. 127.
    Prince F, Winter D, Sjonnensen G, Powell C, Wheeldon R (1998) Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet. Development 35(2):177–185Google Scholar
  128. 128.
    Prinsen EC, Nederhand MJ, Rietman JS (2011) Adaptation strategies of the lower extremities of patients with a transtibial or transfemoral amputation during level walking: a systematic review. Arch Phys Med Rehabil 92(8):1311–1325PubMedGoogle Scholar
  129. 129.
    Proteor. www.proteor.com
  130. 130.
    Purath J, Michaels MA, McCabe G, Wilbur J (2004) A brief intervention to increase physical activity in sedentary working women une intervention ponctuelle en vue daccroitre lactivite physique chez les travailleuses sedentaires. CJNR (Can J Nurs Res) 36(1):76–91Google Scholar
  131. 131.
    Robbins C, Vreeman D, Sothmann M, Wilson S, Oldridge N (2009) A review of the long-term health outcomes associated with war-related amputation. Mil Med 174(6):588–592PubMedGoogle Scholar
  132. 132.
    Robertson DGE (2004) Research methods in biomechanics. Human Kinetics Publishers, ChampaignGoogle Scholar
  133. 133.
    Rusaw D, Ramstrand N (2011) Motion-analysis studies of transtibial prosthesis users: a systematic review. Prosthet Orthot Int 35(1):8–19PubMedGoogle Scholar
  134. 134.
    Sabatini AM, Martelloni C, Scapellato S, Cavallo F (2005) Assessment of walking features from foot inertial sensing. IEEE Trans Biomed Eng 52(3):486–494PubMedGoogle Scholar
  135. 135.
    Sadeghi H, Allard P, Prince F, Labelle H (2000) Symmetry and limb dominance in able-bodied gait: a review. Gait Posture 12(1):34PubMedGoogle Scholar
  136. 136.
    Sanderson D, Martin P (1996) Joint kinetics in unilateral below-knee amputee patients during running. Arch Phys Med Rehabil 77(12):1279–1285PubMedGoogle Scholar
  137. 137.
    Sauren J, Lieby B et al (2010) Motion analysis of the 2009 men’s 100 m world record. PhyDid B-Didaktik der Physik-Beiträge zur DPG-FrühjahrstagungGoogle Scholar
  138. 138.
    Sawicki GS, Ferris DP (2009) A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil 6(1):23PubMedCentralPubMedGoogle Scholar
  139. 139.
    Schaarschmidt M, Lipfert SW, Meier-Gratz C, Scholle HC, Seyfarth A (2012) Functional gait asymmetry of unilateral transfemoral amputees. Hum Mov Sci 31(4):907–917. ElsevierGoogle Scholar
  140. 140.
    Schinder A, Genao C, Semmelroth S (2011) Methodology for control and analysis of an active foot-ankle prosthesis. In: Proceedings of the national conference on undergraduate research (NCUR) 2011, Ithaca College, New York, 31 Mar–2 Apr 2011, pp 2011–2018Google Scholar
  141. 141.
    Schmalz T, Blumentritt S, Jarasch R et al (2002) Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 16(3):255PubMedGoogle Scholar
  142. 142.
    Schneider K, Hart T, Zernicke R, Setoguchi Y, Oppenheim W (1993) Dynamics of below-knee child amputee gait: SACH foot versus Flex foot. J Biomech 26(10):1191–1204PubMedGoogle Scholar
  143. 143.
    Segal A, Orendurff M, Klute G, McDowell M, Pecoraro J, Shofer J, Czerniecki J (2006) Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg®; and Mauch SNS®; prosthetic knees. J Rehabil Res Dev 43(7):857PubMedGoogle Scholar
  144. 144.
    Seroussi R, Gitter A, Czerniecki J, Weaver K (1996) Mechanical work adaptations of above-knee amputee ambulation. Arch Phys Med Rehabil 77(11):1209–1214PubMedGoogle Scholar
  145. 145.
    Seyfarth A, Geyer H, Herr H (2003) Swing-leg retraction: a simple control model for stable running. J Exp Biol 206(15):2547–2555PubMedGoogle Scholar
  146. 146.
    Shen X, Christ D (2011) Design and control of chemomuscle: a liquid-propellant-powered muscle actuation system. J Dyn Syst Meas Control 133(2):021,006–021,006Google Scholar
  147. 147.
    Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40(1–2):28PubMedCentralPubMedGoogle Scholar
  148. 148.
    Silverman A, Fey N, Portillo A, Walden J, Bosker G, Neptune R (2008) Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture 28(4):602–609PubMedGoogle Scholar
  149. 149.
    Springactive. www.springactive.com
  150. 150.
    Sup F, Bohara A, Goldfarb M (2008) Design and control of a powered transfemoral prosthesis. Int J Robot Res 27(2):263–273Google Scholar
  151. 151.
    Sup F, Varol H, Mitchell J, Withrow T, Goldfarb M (2009) Self-contained powered knee and ankle prosthesis: initial evaluation on a transfemoral amputee. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto. IEEE, pp 638–644Google Scholar
  152. 152.
    Sup F, Varol HA, Goldfarb M (2011) Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject. IEEE Trans Neural Syst Rehabil Eng 19(1):71–78PubMedGoogle Scholar
  153. 153.
    Suzuki R, Sawada T, Kobayashi N, Hofer E (2011) Control method for powered ankle prosthesis via internal model control design. In: International conference on mechatronics and automation (ICMA), Beijing. IEEE, pp 237–242Google Scholar
  154. 154.
    Svanström L (1974) Falls on stairs: an epidemiological accident study. Scand J Public Health 2(3):113–120Google Scholar
  155. 155.
    Svensson W, Holmberg U (2006) An autonomous control system for a prosthetic foot ankle. In: 4th IFAC symposium on mechatronic systems, Heidelberg, 2006. International Federation of Automatic Control (IFAC), pp 856–861Google Scholar
  156. 156.
    Svensson W, Holmberg U (2010) Estimating ground inclination using strain sensors with Fourier series representation. J Robot 2010:1–8Google Scholar
  157. 157.
    The amputee statistical database for the United Kingdom 2006/07 (2009). http://www.limbless-statistics.org/documents/Report2006-07.pdf
  158. 158.
    Theeven PJR (2012) Functional added value of microprocessor-controlled prosthetic knee joints. Ph.D. thesis, Maastricht UniversityGoogle Scholar
  159. 159.
    Thomas G, Simon D (2012) Inertial thigh angle sensing for a semi-active knee prosthesis. In: Proceedings of the IASTED international symposia imaging and signal processing in health care and technology (ISPHT 2012), Baltimore. ACTA PressGoogle Scholar
  160. 160.
    Tudor-Locke C, Bassett J (2004) How many steps/day are enough?: preliminary pedometer indices for public health. Sports Med 34(1):1–8PubMedGoogle Scholar
  161. 161.
    Unal R, Carloni R, Behrens S, Hekman E, Stramigioli S, Koopman H (2012) Towards a fully passive transfemoral prosthesis for normal walking. In: 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Rome, 2012. IEEE, pp 1949–1954Google Scholar
  162. 162.
    Vallery H, Burgkart R, Hartmann C, Mitternacht J, Riener R, Buss M (2011) Complementary limb motion estimation for the control of active knee prostheses. Biomedizinische Technik/Biomed Eng 56(1):45–51Google Scholar
  163. 163.
    Van den Bogert AJ (2003) Exotendons for assistance of human locomotion. Biomed Eng Online 2(17):1–8Google Scholar
  164. 164.
    van der Linde H, Hofstad CJ, Geurts AC, Postema K, Geertzen JH, Van Limbeek J et al (2004) A systematic literature review of the effect of different prosthetic components on human functioning with a lower-limb prosthesis. J Rehabil Res Dev 41(4):555–570PubMedGoogle Scholar
  165. 165.
    Vanicek N, Strike S, McNaughton L, Polman R (2009) Gait patterns in transtibial amputee fallers vs. non-fallers: biomechanical differences during level walking. Gait Posture 29(3):415–420PubMedGoogle Scholar
  166. 166.
    van Ingen Schenau Gv, Bobbert M, Rozendal R (1987) The unique action of bi-articular muscles in complex movements. J Anat 155:1Google Scholar
  167. 167.
    Varol H, Sup F, Goldfarb M (2009) Powered sit-to-stand and assistive stand-to-sit framework for a powered transfemoral prosthesis. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto. IEEE, pp 645–651Google Scholar
  168. 168.
    Varol HA, Sup F, Goldfarb M (2010) Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng 57(3):542–551PubMedCentralPubMedGoogle Scholar
  169. 169.
    Verhoeff T (2002) ICRC physical rehabilitation programmes, annual report 2001Google Scholar
  170. 170.
    Versluys R, Lenaerts G, Van Damme M, Jonkers I, Desomer A, Vanderborght B, Peeraer L, Van der Perre G, Lefeber D (2009) Successful preliminary walking experiments on a transtibial amputee fitted with a powered prosthesis. Prosthet Orthot Int 33(4):368–377PubMedGoogle Scholar
  171. 171.
    Vickers DR, Palk C, McIntosh A, Beatty K (2008) Elderly unilateral transtibial amputee gait on an inclined walkway: a biomechanical analysis. Gait Posture 27(3):518–529PubMedGoogle Scholar
  172. 172.
    Vrieling A, Van Keeken H, Schoppen T, Otten E, Halbertsma J, Hof A, Postema K (2008) Uphill and downhill walking in unilateral lower limb amputees. Gait Posture 28(2):235–242PubMedGoogle Scholar
  173. 173.
    Wang S, van Dijk W, van der Kooij H (2011) Spring uses in exoskeleton actuation design. In: IEEE international conference on rehabilitation robotics (ICORR), Zurich. IEEE, pp 1–6Google Scholar
  174. 174.
    Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9(3):207–231PubMedGoogle Scholar
  175. 175.
    Waycaster G, Wu SK, Xiangrong S (2011) Design and control of a pneumatic artificial muscle actuated above-knee prosthesis. J Med Devices 5(3):031003Google Scholar
  176. 176.
    Webster J, Levy C, Bryant P, Prusakowski P (2001) Sports and recreation for persons with limb deficiency. Arch Phys Med Rehabil 82(3):S38–S44PubMedGoogle Scholar
  177. 177.
    Wilson AB (1992) History of amputation surgery and prosthetics. In: Atlas of limb prosthetics: surgical, prosthetic, and rehabilitation principles. Mosby-Year Book, St. Louis, pp 3–16Google Scholar
  178. 178.
    Winter DA (2009) Biomechanics and motor control of human movement. Wiley, HobokenGoogle Scholar
  179. 179.
    Winter DA, Sienko SE (1988) Biomechanics of below-knee amputee gait. J Biomech 21(5):361–367PubMedGoogle Scholar
  180. 180.
    Wolf EJ, Everding VQ, Linberg AL, Schnall BL, Czerniecki JM, Gambel JM et al (2012) Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps. J Rehabil Res Dev 49(6):831–842PubMedGoogle Scholar
  181. 181.
    Wolf EJ, Everding VQ, Linberg AA, Czerniecki JM, Gambel COL (2013) Comparison of the Power Knee and C-Leg during step-up and sit-to-stand tasks. Gait Posture 38(3):397–402. ElsevierGoogle Scholar
  182. 182.
    Yuan K, Zhu J, Wang Q, Wang L (2011) Finite-state control of powered below-knee prosthesis with ankle and toe. In: World congress, Milano, vol 18, pp 2865–2870Google Scholar
  183. 183.
    Zajac FE et al (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359PubMedGoogle Scholar
  184. 184.
    Zelik K, Collins S, Adamczyk P, Segal A, Klute G, Morgenroth D, Hahn M, Orendurff M, Czerniecki J, Kuo A (2011) Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking. IEEE Trans Neural Syst Rehabil Eng 19(4):411–419PubMedGoogle Scholar
  185. 185.
    Zhang F, Liu M, Huang H (2012) Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. In: Annual international conference of the IEEE engineering in medicine and biology Society (EMBC), San Diego, 2012. IEEE, pp 2768–2771Google Scholar
  186. 186.
    Zhu J, Wang Q, Wang L (2010) Pantoe 1: biomechanical design of powered ankle-foot prosthesis with compliant joints and segmented foot. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), Montreal. IEEE, pp 31–36Google Scholar
  187. 187.
    Ziegler-Graham K, MacKenzie E, Ephraim P, Travison T, Brookmeyer R et al (2008) Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 89(3):422PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Lauflabor Locomotion LabTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations