Skip to main content

Unilateral and Bilateral Rehabilitation of the Upper Limb Following Stroke via an Exoskeleton

Part of the Trends in Augmentation of Human Performance book series (TAHP,volume 2)

Abstract

Recent studies reported positive effects of bilateral arm training on stroke rehabilitations. The development of novel robotic-based therapeutic interventions aims at recovery of the motor control system of the upper limb, in addition to the increase of the understanding of neurological mechanisms underlying the recovery of function post stroke. A dual-arm upper limb exoskeleton EXO-UL7 that is kinematically compatible with the human arm is developed to assist unilateral and bilateral training after stroke. Control algorithms are designed and implemented to improve the synergy of the human arm and the upper limb exoskeleton. Clinical studies on the robot-assisted bilateral rehabilitations show that both the unilateral and bilateral training have a positive effect on the recovery of the paretic arm. Bilateral training outperforms unilateral training by a significant improvement of motion range and movement velocities.

Keywords

  • Unilateral/bilateral stroke rehabilitation
  • Upper limb exoskeleton
  • Human arm
  • Kinematics
  • Dynamics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-8932-5_15
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-8932-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8
Fig. 15.9
Fig. 15.10
Fig. 15.11
Fig. 15.12
Fig. 15.13
Fig. 15.14
Fig. 15.15
Fig. 15.16
Fig. 15.17
Fig. 15.18
Fig. 15.19
Fig. 15.20
Fig. 15.21
Fig. 15.22
Fig. 15.23

References

  1. Kagerer F, Summers J, Semjen A (2003) Instabilities during antiphase bimanual movements: are ipsilateral pathways involved?. Exp Brain Res 151:489–500

    PubMed  CrossRef  Google Scholar 

  2. Cattaert D, Semjen A, Summers J (1999) Simulating a neural cross-talk model for between-hand interference during bimanual circle drawing. Biol Cybern 81:343–358

    CAS  PubMed  CrossRef  Google Scholar 

  3. Yavuzer G, Selles R, Sezer N, Sutbeyaz S, Bussmann J, Koseoglu F, Atay M, Stam H (2008) Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Biol Cybern 89:393–398

    Google Scholar 

  4. Sutbeyaz S, Yavuzer G, Sezer N, Koseoglu B (2007) Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial. Arch Phys Med Rehabil 88(5):555–559

    PubMed  CrossRef  Google Scholar 

  5. Cauraugh J, Kim S, Duley A (2005) Coupled bilateral movements and active neuromuscular stimulation: intralimb transfer evidence during bimanual aiming. Neurosci Lett 382(1–2): 39–44

    CAS  PubMed  CrossRef  Google Scholar 

  6. Simkins M, Fedulow I, Kim H, Abrams G, Byl N, Rosen J (2012) Robotic rehabilitation game design for chronic stroke. Games Health J 1(6):422–430

    CrossRef  Google Scholar 

  7. Lum P, Burgar C, Shor P, Majmundar M, Loos MVD (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Am Congr Rehabil Med Am Acad Phys Med Rehabil 83:952–959

    Google Scholar 

  8. Perry JC, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. Mechatronics 12(4):408–417

    Google Scholar 

  9. Perry JC, Rosen J (2006) Design of a 7 degree-of-freedom upper-limb powered exoskeleton. In: IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, Pisa

    Google Scholar 

  10. Krebs HI, Ferraro M, Buerger SP, Newbery MJ, Makiyama A, Sandmann M, Lynch D, Volpe BT, Hogan N (2004) Rehabilitation robotics: pilot trial of a spatial extension for mit-manus. J NeuroEng Rehabil 1:5

    PubMed Central  PubMed  CrossRef  Google Scholar 

  11. Krebs HI, Hogan N, Aisen ML, Volpe BT (2007) Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):327–335

    PubMed Central  PubMed  CrossRef  Google Scholar 

  12. Reinkensmeyer D, Wolbrecht E, Bobrow J (2007) A computational model of human-robot load sharing during robot-assisted arm movement training after stroke. In: Conf Proc IEEE Eng Med Biol Soc 2007:4019–4023

    Google Scholar 

  13. Majumdar S (1995) Pneumatic system: principles and maintenance. Tata McGraw-Hill, New Delhi

    Google Scholar 

  14. He J, Koeneman EJ, Schultz RS, Huang H, Wanberg J, Herring DE, Sugar T, Herman R, Koeneman JB (2005) Design of a robotic upper extremity repetitive therapy device. In: ICORR 2005, Chicago

    Google Scholar 

  15. He J, Koeneman EJ, Schultz RS, Herring DE, Wanberg J, Huang H, Sugar T, Herman R, Koeneman JB (2005) Rupert: a device for robotic upper extremity repetitive therapy. In: EMBS 2005, Shanghai

    Google Scholar 

  16. Kim H, Miller L, Fedulow I, Simkins M, Abrams G, Byl N, Rosen J (2013) Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. IEEE Trans Neural Syst Rehabil Eng 21(2):153–164

    PubMed  CrossRef  Google Scholar 

  17. Perry J, Powell J, Rosen J (2009) Isotropy of an upper limb exoskeleton and the kinematics and dynamics of the human arm. J Appl Bionics Biomech 6(2):175–191

    CrossRef  Google Scholar 

  18. Rosen J, Perry J (2007) Upper limb powered exoskeleton. J Humanoid Robot 4(3):1–20

    Google Scholar 

  19. Kim H, Miller L, Rosen J (2011) Redundancy resolution of a human arm for controlling a seven dof wearable robotic system. In: EMBC 2011, Boston

    Google Scholar 

  20. Kim H, Li Z, Milutinovic D, Rosen J (2012) Resolving the redundancy of a seven dof wearable robotic system based on kinematic and dynamic constraint. In: ICRA 2012, St. Paul

    Google Scholar 

  21. Miller LM, Rosen J (2010) Comparison of multi-sensor admittance control in joint space and task space for a seven degree of freedom upper limb exoskeleton. In: Proceedings of the 3rd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, Tokyo, pp 26–29

    Google Scholar 

  22. Kallmann M (2008) Analytical inverse kinematics with body posture control. Comput Animat Virtual Worlds (CAVW) 19(2):79–91

    CrossRef  Google Scholar 

  23. Lee P, Wei S, Zhao J, Badler NI (1990) Strength guided motion. Comput Graph 24:253–262

    CrossRef  Google Scholar 

  24. Iossifidis I, Steinhage A (2002) Controlling a redundant robot arm by means of a haptic sensor. In: ROBOTIK 2002, pp 269–274

    Google Scholar 

  25. Korein JU (1985) A geometric investigation of reach. MIT, Cambridge

    Google Scholar 

  26. Perry J, Rosen J (2006) Design of a 7 degree-of-freedom upper-limb powered exoskeleton. In: Proceedings of the 3rd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, Pisa, pp 805–810

    Google Scholar 

  27. Tsagarakis N, Caldwell DG (2003) Development and control of a ‘Soft-Actuated’ exoskeleton for use in physiotherapy and training. Auton Robot 15(1):21–33

    CrossRef  Google Scholar 

  28. Wang X (1999) A behavior-based inverse kinematics algorithm to predict arm prehension posture for computer-aided ergonomic evaluation. J Biomech 32(5):453–460

    CAS  PubMed  CrossRef  Google Scholar 

  29. Zhang X, Chaffin DB (1999) The effects of speed variation on joint kinematics during multisegment reaching movements. Hum Mov Sci 18:741–757

    CrossRef  Google Scholar 

  30. Yang F, Yuan X (2003) An inverse kinematical algorithm for human arm movement with comfort level taken into account. In: Proceedings of 2003 IEEE conference on control applications, Istanbul, Turkey, pp 1296–1300

    Google Scholar 

  31. Garner B, Pandy M (1999) Final posture of the upper limb depends on the initial position of the hand during prehension movements. Comput Methods Biomech Biomed Eng 2(2):107–124

    CrossRef  Google Scholar 

  32. Badler NI, Tolani D (1996) Real-time inverse kinematics of the human arm. Presence 5(4):393–401

    PubMed  Google Scholar 

  33. Craig J (2003) Introduction to robotics: mechanics and control, 3rd edn. Prentice Hall, Harlow, ch 1

    Google Scholar 

  34. Yu W, Rosen J, Li X (2011) Admittance control for an upper limb exoskeleton, 2011 american control conference. In: 2011 American control conference – ACC, San Francisco, pp 1124–1129

    Google Scholar 

  35. Kim H, Miller LM, Rosen J (2012) Admittance control of seven-dof upper limb exoskeleton to reduce energy exchange. In: ICRA 2012, Saint Paul, pp 1–4

    Google Scholar 

  36. Sciavicco L (1987) A dynamic solution to the inverse kinematic problem for redundant manipulators. In: ICRA 1987, vol 4. Raleigh, NC, USA, pp. 1081–1087

    Google Scholar 

  37. Sciavicco L (1988) A solution algorithm to the inverse kinematic problem for redundant manipulators. IEEE Trans Robot Automat 4(4):403–410

    CrossRef  Google Scholar 

  38. Asada H, Granito J (1985) Kinematic and static characterization of wrist joints and their optimal design. In: ICRA 1985, St. Louis, pp 244–250

    Google Scholar 

  39. Yoshikawa T (1985) Dynamic manipulability of robot manipulators. In: ICRA 1985, St. Louis, pp 1033–1038

    Google Scholar 

  40. Yoshikawa T (1990) Foundations of robotics: analysis and control. MIT, Cambridge

    Google Scholar 

  41. Soechting J, Buneo C, Herrmann U, Flanders M (1995) Moving effortlessly in three dimensions: does donders’ law apply to arm movement? J Neurosci 15(9):6271–6280

    CAS  PubMed  Google Scholar 

  42. Kang T, He J, Tillery SIH (2005) Determining natural arm configuration along a reaching trajectory. Exp Brain Res 167:352–361

    PubMed  CrossRef  Google Scholar 

  43. Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4(2):2745–2754

    CAS  PubMed  Google Scholar 

  44. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurophysiol 5:1688–1703

    CAS  Google Scholar 

  45. Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement – minimum torque-change model. Biol Cybern 61:89–101

    CAS  PubMed  CrossRef  Google Scholar 

  46. Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J Neurophysiol 81(5):2140–2155

    CAS  PubMed  Google Scholar 

  47. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 194:780–784

    CrossRef  Google Scholar 

  48. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    CAS  PubMed  CrossRef  Google Scholar 

  49. Duma RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77:677–682

    CrossRef  Google Scholar 

  50. Graziano MS, Taylor CS, Moore T (2002) Complex movements evoked by micro stimulation of precentral cortex. Neuron 34:841–851

    CAS  PubMed  CrossRef  Google Scholar 

  51. Aerospace medical research laboratory (1975) Investigation of inertial properties of human body, Tech rep, Mar 1975

    Google Scholar 

  52. Wada Y, Kaneko Y, Nakano E, Osu R, Kawato M (2001) Quantitative examinations for multi joint arm trajectory planningusing a robust calculation algorithm of the minimum commanded torque change trajectory. J Neural Netw 14:381–393

    CAS  CrossRef  Google Scholar 

  53. Biess A, Liebermann D, Flash T (2007) A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J Neurosci 27:13 045–064

    Google Scholar 

  54. Li Z, Roldan J, Milutinovic D, Rosen J (2013) The rotational axis approach for resolving the kinematic redundancy of the human arm in reaching movements. In: EMBC 2013, Osaka, pp 1–4

    Google Scholar 

  55. Secoli R, Milot MH, Rosati G, Reinkensmeyer D (2011) Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke. J Neuroeng Rehabil 8:21

    PubMed Central  PubMed  CrossRef  Google Scholar 

  56. Microsoft. Microsoft robotic developer studio 2008. (Online). Available: http://www.microsoft.com

  57. Krakauer JW (2006) Motor learning: its relevance to stroke recovery and neurorehbilitation. Curr Opin Neurol 19(1):84–90

    PubMed  CrossRef  Google Scholar 

  58. Kato PM (2012) Games for health journal: evaluating efficacy and validating games for health. Curr Opin Neurol 1(1):74–76

    Google Scholar 

  59. B U S of Public Health. Random error. (Online). Available: sph.bu.edu/otit/MPH-Modules/EP/EP713-RandomError-print.html

    Google Scholar 

  60. Taub E, Uswatte G, Pidikiti R (1999) Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation–a clinical review. J Rehabil Res Dev 36(3):237–251

    CAS  PubMed  Google Scholar 

  61. Andrews A, Bohannon R (1989) Decreased shoulder range of motion on paretic side after stroke. Phys Ther 69(9):768–772

    CAS  PubMed  Google Scholar 

  62. Mathiowetz V, Volland G, Kashman N, Wever K (1985) Adult norms for the box and block test of manual dexterity. Am J Occup Ther 39(6):386–391

    CAS  PubMed  CrossRef  Google Scholar 

  63. O’Dwyer N, Ada L, Neilson P (1996) Spasticity and muscle contracture following stroke. Brain 119(Pt5):1737–1749

    Google Scholar 

  64. Prange G, Jannink M, Groothuis-Oudshoorn C, Hermens H, Ijzerman M (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–184

    PubMed  CrossRef  Google Scholar 

  65. Norouzi-Gheidari N, Archambault P, Fung J (2012) Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J Rehabil Res Dev 49:479–496

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rosen, J., Milutinović, D., Miller, L.M., Simkins, M., Kim, H., Li, Z. (2014). Unilateral and Bilateral Rehabilitation of the Upper Limb Following Stroke via an Exoskeleton. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_15

Download citation